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Simple approach to the generalized Minkwitz theorem
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The Minkwitz theorem plays an important role in the design of progressive addition lenses. Recently,
this theorem has been generalized by Esser et al. [J. Opt. Soc. Am. A 34, 441 (2017)] to non-umbilic lines
under the assumption of a symmetric surface. We present a simplified derivation and generalize their
findings to arbitrary but sufficient smooth surfaces. © 2017 Optical Society of America
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1. INTRODUCTION

Most presbyopic people use progressive addition lenses as an
aid, if they are to see clearly over a range of object distances.
These distances are encoded by spatial positions on the surfaces
of such lenses. The canonical design for a progressive addition
lens includes a far zone, a near zone and a connecting narrow
corridor, which is used for intermediate distances.

In this progression zone the optical power increases smoothly
and each tiny patch corresponds to a different object distance.
Therefore, looking at a specific object point requires a combi-
nation of the eyes’ gaze direction together with an appropriate
head movement. In a way, the muscles of the neck take over the
function of the ciliary muscle.

Although the recent freeform surface technology is able to
generate almost every geometric surface shape, not every optical
power distribution across the the surface is feasible. Constraints
from differential geometry effectively limit the design possibili-
ties.

The Minkwitz theorem informs us about an important con-
straint: if the power increases along an umbilic line (a line with
equal principal curvatures), the astigmatism (the difference of
the principal curvatures) increases twice as fast in the lateral
direction normal to this line. Because this line constitutes the
spine of the design, it is called the principal line, see Figure 1.

Given a tolerance on visual acceptable astigmatism, the pro-
gression zone only provides a restricted lateral width for undis-
turbed vision. Hence, the lateral field of view is substantially
limited in the region of the corridor, because visual acuity is
considerably reduced in the lateral direction.

Even in the most recent designs of progressive addition lenses
this constraint is the most constricting one for the user of such
lenses. Obviously, a better understanding of the Minkwitz theo-
rem is helpful to tweak designs toward the optimum.

Recently, Esser et al. presented a generalized version of this
theorem [1] . The authors abandoned the assumption of an
umbilic line, and they demonstrated that the lateral astigmatism

not only depends on the change rate of power, but also on the
change rate of astigmatism along the principal line. However,
the authors kept the assumption of a symmetric surface, with the
principal line as a symmetry line. An exhaustive list of references
is given in their publication, to which the interested reader is
referred.

The authors derived their findings by application of straight
forward, but lengthy methods from differential geometry. They
paved a way to a much shorter and simpler derivation of this
theorem, which will be presented in the next section. The as-
sumption of a symmetric surface can be skipped along this way.

2. DERIVATION OF THE GENERALIZED MINKWITZ THE-
OREM

We consider a sufficient smooth surface and a given line on this
surface, which will be denoted principle line. Along this line the
design characteristics of the surface, including the change rate
of curvature, are prescribed.

Around a point P, located on the principle line, we choose an
infinitesimal small patch and introduce the following coordinate
system: the z-axis parallels the surface normal in P; the y-axis is
chosen tangential to the principle line, and the x-axis completes
the right handed orthogonal coordinate system pointing into the
lateral direction.

The elevation of the surface f (x, y) in this small patch around
P can be described by a function of the local coordinates x, y
restricted to second order contributions:

f(2)(x, y) =
1
2

(
H(x2 + y2) + A0(x2 − y2) + 2A45xy

)
(1)

Because of the chosen coordinate system no constant or linear
terms appear in this equation. The functional form of Eq. (1)
offers a simple interpretation in terms of the curvature-related
optical properties of the surface. The coefficients represent the
mean curvature (H), the aligned astigmatism along the coor-
dinate axes (A0), and the the oblique astigmatism along the
bisecting lines (A45).
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Fig. 1. Typical layout of a progression addition lens with three
functional parts: the region for distant objects (top), the one
for near objects (bottom), and the corridor for intermediate
distances, where the power is changing along the principal
line. The corridor is bordered by regions with high amounts
of astigmatism. At a given point P a local coordinate system is
chosen, such that the normal to the surface parallels the z-axis.

In terms of the coefficients of the second fundamental form,
usually denoted L, M, N, we have

H =
1
2
(L + N) (2)

A0 =
1
2
(L− N) (3)

A45 = M (4)

The coefficients H, A0, and A45 are constant for a given patch,
but generally vary with its position and can be considered as
functions of the position of the point P: H(P), A0(P) and A45(P).
The functional form of Eq. (1) is the same at every point P, as
long as the specific coordinate system described above is chosen.

We assume that the explicit global form of the surface f (x, y),
is given with respect to the specific coordinate system at a point
P. Then the coefficients L, M, N can be calculated as functions of
the coordinates x, y from the equations

L(x, y) =
fxx√

D

M(x, y) =
fxy√

D

N(x, y) =
fyy√

D
(5)

where
D = 1 + ( fx)

2 + ( fy)
2 (6)

Partial derivatives are denoted by indices, e.g. fx = ∂ f /∂x. It is
assumed that the order of derivatives can be interchanged.

At each point, say x = x̄ and y = ȳ, the values of L, M, N can
be plugged into Eq. (1) to get the quadratic approximation at the
point x̄, ȳ. Note however, that in Eq. (1) local coordinates with
respect to the specific coordinate system centered at x̄, ȳ have to
be applied.

Of interest here are only infinitesimal changes of the coef-
ficients L, M, N in the infinitesimal neighborhood of a point P.
They can be calculated from equations (5) and are determined
by the third order partial derivatives fxxx, fxxy etc., evaluated at
the origin of the coordinate system x = y = 0. The contributions
from the denominator, resulting from the product and chain rule,
eventually collapse to a factor 1, since fx(0, 0) = fy(0, 0) = 0.
We thus have Lx = fxxx, etc., without any further contributions
of first or second order derivatives. This is a specific property of
the coefficients L, M, N resulting from the specific expressions
in Eq. (5). In the general case, the fundamental properties mean
curvature and Gaussian curvature both depend on L, M, N and
on the coefficients of the first fundamental form E, F, G. As a
reasoning along the same line as above shows, these coefficients
do not generate additional contributions.

The design of the lens prescribes the progression of the mean
curvature along the principle line. Roughly speaking, this is the
difference between the optical power in the far and in the near
zone divided by the length of the progression zone.

The partial derivative tangential to the principal line is a
given function along that line. At a given point we have

Hy =
1
2
(

Ly + Ny
)
=

1
2
(

fxxy + fyyy
)

(7)

The remaining first order partial derivatives of the coefficients
are

A45
x = Mx = fxyx (8)

A0
y =

1
2
(

Ly − Ny
)
=

1
2
(

fxxy − fyyy
)

(9)

A45
y = My = fxyy (10)

A0
x =

1
2
(Lx − Nx) =

1
2
(

fxxx − fyyx
)

(11)

Hx =
1
2
(Lx + Nx) =

1
2
(

fxxx + fyyx
)

(12)

The last three partial derivatives are zero for a symmetric
surface because all odd numbered derivatives with respect to x
are zero in this case.

Independent of the symmetry assumption, the combination
of the first three equations, Eq. (7) -(9), renders the main and
general result

A45
x = Hy + A0

y (13)

which is equivalent to Eq. (29) of [1], where the following sub-
stitutions have to be applied to their notation: β → x, s → y,
(k + ∆k/2)′ → Hy, and (∆k/2)′ → A0

y. Note, that the assump-
tion of symmetry has been explicitly exploited in their deriva-
tion.

The combination of the remaining three equations, Eq. (10) -
(12), leads to the lateral change of the aligned astigmatic compo-
nent

A0
x = Hx − A45

y (14)

A lateral change of the mean curvature Hx induces a change of
magnification and is avoided in modern lenses, because a hor-
izontal head turn would introduce unusual visual "breathing"
effects in the image. Therefore, in real lenses, we often have
Hx ≈ 0. There is no advantage of introducing A45

y 6= 0. So, the
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relation A0
x ≈ 0 holds as well. Hence, actually produced lenses

usually show nearly symmetric surfaces.
The equations (13) and (14) eventually reduce to the compati-

bility equations in their simplest form:

Ly = Mx My = Nx (15)

These equations demand, that the third order mixed partial
derivatives have to be independent of the order of differentia-
tion. Therefore, the coefficients L, M, N can not be arbitrarily
prescribed across a surface. Instead, the compatibility equa-
tions have to be fulfilled. When the design of a principal line
is prescribed, the compatibility equations introduce constraints
between changes of mean curvature and the both forms of astig-
matism. The first constraint has been described by the Minkwitz
theorem, which is by far the most important aspect from the per-
spective of practical applications in progressive addition lenses.

For the sake of simplicity, we omitted the factor n′ − n, ac-
counting for the difference between the refractive indices of the
media behind and in front of the surface. This factor transforms
curvatures into paraxial optical powers. In reality, rays or wave
fronts are not confined to the paraxial region. Additionally, we
have to consider the refraction at the second surface including
the transfer to this surface. All these effects have to be consid-
ered when the whole progressive addition lens is taken into
account. These calculations may be realized by numerical ray
tracing, but it is difficult to describe them analytically. Therefore,
we stay with the most simple properties of one surface only.

3. DISCUSSION

The generalized Minkwitz theorem, Eq. (13), can be derived
quite easily for the general case, if an appropriate coordinate sys-
tem in the tangential plane to a considered point P is chosen. The
findings are then restricted to infinitesimal first order changes,
which is appropriate for the derived result. The derivation by
Esser et al. presents add-on insights, because higher order terms
and their behavior are explicitly considered and discussed.

From a standpoint of optical design the generalized Minkwitz
theorem introduces a new degree of freedom for the balancing of
aberrations: the change rate of the coefficient A0 along the prin-
cipal line. The width of the progression corridor, and therefore
the field of view, can be augmented, if the change rate A0

y is pro-
portional to the negative rate of the mean curvature , A0

y ∝ −My.
Then, the oblique astigmatism increases with a slower rate than
in the case of an umbilic line.

Vice versa, the theorem likewise states that the lateral change
rate of A45 can only be traded off against the tangential change
rate of A0

y. It is not possible to avoid both of them.
Often, a reduced visual acuity due to astigmatism in the near

zone is more acceptable than a reduced lateral field of view. This
may be important in the case of wearing progressive addition
lenses in front of computer monitors. Here, an increasing astig-
matism supplemented by a reduced power change rate might be
acceptable to widen the field of view in the corridor of the lens.

As a matter of fact this strategy is already at work in the
design and production of modern progressive addition lenses.
What as yet is actually done in a heuristic manner, can now be
explained by the generalized Minkwitz theorem - at least in the
direct surroundings of the principal line.

In a way the Minkwitz theorem, as seen in the perspective of
the compatibility equations, is a kind of no-go-theorem: it is not
possible to assign arbitrary values of optical power along a line
without introducing astigmatism, either along or lateral to that

line. Therefore, the canonical layout of a progressive addition
lens can be tweaked, but it can not be shaken up.
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