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ABSTRACT: Spectacle corrections worn in a frame with a faceform tilt should be used with effective spherocylindrical
parameters. For the case of oblique central refraction, Keating presented a procedure to determine these parameters
in a third-order approximation. The central equation of his approach, the effective dioptric power matrix, is partly the
result of an educated guess. Based on the equations of wavefront tracing, an analytical derivation of his equation,
slightly modified however, is given in this paper. (Optom Vis Sci 2002;79:68-73)
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aceform tilted spectacle frames, especially sunglasses and
F sports goggles, are increasingly used. If they are worn with
correcting spectacle lenses, the lens parameters are different
from those determined in a standard refraction. Keating' described
a procedure to calculate the effective parameters of the spectacle
lenses needed to offset the optical effects introduced by the face-
form tilt. In a second pa\per,2 he analyzed the advanced problem of
a combination of faceform and pantoscopic tilts. In both papers,
Keating applied the third-order approximation for thin lenses, as-
suming a situation where a ray passes through the optical center of
the tilted spectacle lens. This geometrical setup is well known as
oblique central refraction (OCR). Exact ray tracing results, also
given by Keating, back up his approach. In various applications
around the world, the Keating equation for the effective dioptric
power matrix has been found useful and has helped to improve the
vision of many people.

However, the Keating equation (Equation 15 of the first cited
paper) is partly the result of an educated guess and lacks an analyt-
ical derivation. Because Keating checked the usefulness of his equa-
tion by the numerical results from exact ray tracing, the missing
foundation is not a problem, at least from a pragmatic point of
view. Nevertheless, the purpose of this paper is to present a deri-
vation of the Keating equation. As the result shows, the original
Keating equation has to be modified slightly and will look a little
simpler. This might help to make Keating’s approach more com-
prehensive and plausible.

This paper is organized as follows. First, the equations of the
so-called wavefront tracing are introduced. They describe the path
of an infinitesimal wavefront area through an optical system. Un-
fortunately, this takes some space, which is needed to explain these
less-known equations. Next, they are applied to the case of paraxial

refraction and connected to the concept of the dioptric power
matrix. The problem of OCR is solved by these equations, even-
tually resulting in an effective dioptric power matrix, which vindi-
cates the result of Keating. The paper concludes with some further
remarks on the problem of dispensing tilted frames. The hasty
reader might directly jump to Equation 32 to grasp the main result.

WAVEFRONT TRACING EQUATIONS

In visual optics, the terminology of wavefronts and their ver-
gences is commonplace. A neat terminology, the dioptric matrix
approach, has been developed to describe optical problems con-
cerned with spherocylindrical elements.> * There are at least two
reasons for this development. First, astigmatic pencils belong to the
everyday business of optometry, which is different from other
branches of optics. Second, due to the relatively small pupil of the
eye, we are dealing with narrow pencils, and, therefore, the local
curvatures of small wavefront elements are sufficient to describe
the relevant optics (i.e., parameters such as S/C X a) as long as
higher aberrations are excluded. The appropriate tool of wavefront
tracing is described in detail by Stavroudis,> ¢ to which we refer
heavily. Stavroudis uses the term generalized ray tracing. Wave-
front tracing is preferred in this paper because the procedure pro-
vides information on the shape of the wavefront in a small neigh-
borhood of its intersection with the related ray. For spherical
surfaces, the Coddington equations create the equivalent informa-
tion.” They fail, however, for spherocylindrical surfaces with
oblique axes. A quite recent but more formal extension of Cod-
dington equations to wavefront tracing is given by Landgrave and
Moya-Cessa.®

As afirst step, wavefront tracing is applied to the refraction of an
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(infinitesimal) wavefront 3 at a surface S, which separates media
with refractive indices n and n'. The unit normal vector to the
wavefront 3, the ray direction vector, is denoted s and is normal-
ized to s = 1. The normal vectors to the refracted wavefront >
and to the refracting surface S are called s' and m, respectively. The
latter depends on the point of incidence P. For all vectors, which
are all unit vectors, small bold letters are used. For the matrices, we
switch to capital bold letters. The directions of the ray direction
vectors are governed by Snell’s law in its vector form

n's’ =ns + gm (1)

where g is a function of the angles of incidence I and refraction
I

g=n"cosl'" —ncosl (2)
The cosines of the angles are given by

cosI=s'm and cosI'=s"'m (3)

We next introduce three coordinate systems associated with the
wavefront, the refracting surface, and the refracted wavefront. The
primed quantities belong to the refracted wavefront 3', the
unprimed to 2, and the quantities with a bar are associated with
the refracting surface S. Common to all three is the vector p,
normal to the plane of incidence, tangent to both wavefronts and
to the refracting surface, given by the vector product

m X s

P inT @

Next, the ray vectors s and s' and the normal vector to the
refractive surface m are chosen. T'o complete the definition, we use
q=pXs,q =pXsandq=pXm.

The pair of principal curvatures of the incident wavefront 3, of
the refracted wavefront %', and of the surface S are labeled k; and
Ky, K'; and K'5, and ¢, and c,, respectively. Greek letters are used
for wavefront curvatures, and Latin letters are used for surface
curvatures. Finally, the principal directions of k;, k';, and ¢, are
given by the vectors t, t', and t, respectively. Next we calculate the
angles B, B', and B between the vectors t, t', and T and p according
to

cosB=tp cosB=tp cosB =t‘p (5)

With respect to the defined coordinate systems, we are able to
calculate a pair of normal curvatures in arbitrary orthogonal planes
containing the normal vector and the related torsion for the inci-
dent wavefront by

K, = K; cos’B + K, sin’3

! (6)

= Kk, sin’B + Kk, cos’P

=
|

Kpq = (K; — K;) cos B sin B

for the refracting surface by

o
I

= ¢, cos’B + ¢, sin’P

b 7)

¢, sin’B + ¢, cos’p

S
Il
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53 = (¢ — ¢)cos B sin B

and eventually for the refracted wavefront by

k!, = K| cos’B’ + K} sin’B’

k! = k| sin’B’ + Kk} cos’B’

=
Il

g = (k] = Kj)cos B’ sin B

This concludes the topic of coordinate systems. The set of wave-
front tracing equations can now be presented

! [
n'K, = nK, t gc,
9)
o cos’l
n'K, = nKk, + [ox
7 cos’l’ 9 os?]’ T4
cos | g
n'k = nK,, + Cyo
PO cos " P cosI' TP

The somewhat cumbersome notation of the general case should
remind the reader that all curvatures and torsions are referred to
their related coordinate systems. However, the application to the

problem of OCR will make things easier.

PARAXIAL REFRACTION OF A WAVEFRONT

Next, the wavefront tracing equations are related to the notion
of the dioptric power matrix. Therefore, we consider the simple
case of a paraxial refraction at a single spherocylindrical surface,
when cosI = cosI'=1orl =1'= 0, which resultsing =n"' — n.
The incident and the refracted wavefront propagate along the op-
tical axis, called z axis, and therefore the ray vectors are equal to the
surface normal

(10)

z=s=s =m

All three coordinate systems, defined above, become identical.
The direction of p is arbitrarily defined as the vertical y axis, i.e.,

y=p (11)

Eventually, by

x=q=q =q (12)

we end up with a right-handed coordinate system, spanned by x,
y, and z. It is worthwhile to note that the direction of the horizon-
tal x axis is opposite to the usual coordinate system (Fig. 1). Look-
ing from upstream in the positive z direction toward the eye, the x
axis is pointing to the left to ensure a right-handed coordinate
system.

The principle curvature directions of the incident wavefront are
chosen to be aligned with the x and y axes. However, the principle
curvature direction of the surface, ¢, includesan angle o, 0 = o =
7, with the negative x axis, i.e.,

(13)

t= —xcosa + ysina

Again, looking from upstream in the positive z direction, this
angle a agrees with the conventional definition used for the direc-
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FIGURE 1.

Looking from upstream in the positive z direction toward the eye, the
positive x axis points to the left to ensure a right-handed coordinate
system. The angle « is measured between the direction of the cylinder axis
and the negative x axis. The angle B is applied in the wavefront tracing
equations.

tion of the cylinder axis. Applying these assumptions to the wave-
front tracing Equations 9 result in

n'k! = nk, + (n' — n)(c,cos’a + c,sin’ar) 14
n'k; = nk, + (n" — n)(c;sin’a + cycos’ar)
n'ky = nk,, + (0" — n)((¢; — ¢;)cos a sin o)

where the relation cos p = T - p = sin « has been inserted into
Equation 7. If we define the spherical and cylindrical powers as

S=(n" —n)q (15)
C=("—n)—¢)
and introduce the matrix notation
S=n< :y T(Y) s'=n'< KKY 'f(;) (16)
then the following relation holds
$=S+P (17)
where
S+ Csin*a

—C cos & sin o
S + C cos* a
(18)

—C cos a sin a

is the well-known dioptric power matrix.

WAVEFRONT TRACING AND OCR

Wavefront tracing will now be applied to the two surfaces of a
thin spherocylindrical lens in air with both surfaces in contact. The
refractive index of the material is denoted by n. The first surface, or
front surface, is assumed spherical, i.e., ¢,V = ¢, = ¢V, The
superscript (" denotes the surface number. The second surface, or
@ and ¢,

acting as a spherocylindrical surface. The dioptric powers along the

back surface, has the pair of principal curvatures ¢,

principal directions are given by

S=(n— 1" —d)
C=(n— 1)~
S+ C=(n—1)(c"—c?)

As will be seen from the result, the order of the surfaces plays no
role. Because the overwhelming majority of spherocylindrical spec-
tacle lenses have a toric back surface, the given order is the preferred
starting point.

Based at the thin lens, we consider only one right-handed coor-
dinate system because the two coordinate systems of the front and
the back surface are chosen to be identical. The optical axis is
chosen as the z axis. Its positive direction points toward the eye. In
the plane of the lens, we apply a horizontal and vertical coordinate
system. The positive direction of the vertical y axis is upwards.
Therefore, to ensure the right handedness of the (x, y, z) coordinate
system, the positive direction of the horizontal x axis points to the
left if we are looking downstream toward the eye.

Instead of a tilted thin lens, we equivalently consider an oblique
incident ray vector s. The tilt angle ¢ results from the angle be-
tween the incident ray and the normal vector to the first surface,
which is identical to z, leading to

(20)

s z=cosb

The incoming ray hits the front surfaces at the origin of the
coordinate system. The ray heights on both surfaces are then zero.
Moreover, from the assumption of a thin lens follow the relations

cos I; = cos I} = cos & 1)

cos I} = cos I,

where the indices refer to the number of the surfaces.
The repeated application of the wavefront tracing equations to
each surface, after the customary few lines, results in

r_ @
K, = gl(c <)
? P (22)
- & (_.o
Ky cos2¢(c ;)
T - S
Koa T T cos b “pa
where
g=ncosl, —cosd (23)

The primed quantities denote the curvatures and torsion of the
wavefront leaving the thin spherocylindrical lens. Therefore, at the
left side of the equations, the superscript ® is suppressed. The
incoming wavefront is assumed plane with vanishing curvatures
and torsion.

Considering a near object instead would result in additive terms
to the curvatures with the related curvatures of the incident spher-
ical wavefront. Because these terms are independent of the tilt
angle, they do not infer with the considered problem, and, there-
fore, we omitted this case.

Up to now, the above equations are exact, and no approxima-
tion concerning the angles has been applied. The so-called third-
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order approximation is now introduced by the usual expansion of
the cosine terms as cos x =~ 1 — x*/2. This step renders the final
result independent of the actual form, i.e., the base curve, of the
lens. Rearranging terms by application of Equations 20 and Snell’s
law finally leads to the result

<j = (0= D)

(24)
) h(¢)
Kg = (n—l)(c“) - Céz))m
h(¢)
[ (2)
Kpq = —(n— l)cf’%lcos o
where the function
h(d) = sin’d
@) =1+~ (25)

has been introduced. The terms of fourth and higher orders are
neglected. Nevertheless, we use the equals sign in the widespread
sloppy habit. The usual convention is adopted to re-express qua-
dratic terms in ¢ as sine-squared functions and leave the cos-terms
in the denominators unexpanded. This is no claim for improved
accuracy because the results are still restricted to the third-order
approximation.

The normal curvatures along the x and y axes have to be related
to the principle curvatures of the toric surface by Equation 7. The
direction of the cylinder axis of the toric surface is given by the
vector t~ and specified in Equation 13. According to Equations 5
and 4, we have

_ 1 -
- <. X
cos B sn1t (m X s) (26)
Using s = sx + s;y + s,z, where s>+ sy2 + 52 =1,and
applying m = z results in
= o _ 3
cos B Gnl (s,cos ¢ + s;sin @) = cos(a —y)  (27)
where tan y = s./s,.

In the case of a faceform tilt, the tangential plane is the x, z plane
and, therefore, s, = 0 (Fig. 2). Because s, = sin I, this leads to

cos B =sina or B=§—0L (28)
Inserting
B = T« (29)
into Equation 7 yields
(2) — (2 (2) _ (2 2
¢ =¢’ +(c c?)cos’a
1 (c5 1 (30)

cy) = c(lz) + (cgz) - c(lz))sinza
cg) = (¥ — ¢)cos a sin &

where the indices p, q have been changed according to the
relations p = y and q = x. Combining this result with Equations
24 and 19 leads to
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FIGURE 2.

A right-handed coordinate system is based at the thin lens. The z axis
(optical axis) points toward the eye for positive values. The y axis and x
axis are orientated vertically and horizontally. Shown is the incident ray
vector s including an angle ¢ with the optical axis. The displayed situation
is equivalent to a faceform tilted lens. The principle direction ¢, of the lens
includes an angle B with the y axis. The angle @, however, measured from
the negative x axis is the standard angle describing the orientation of the
cylinder axis.

Kk, = (S + Csin’a) h(d)
h(d)

cos’d

k. = (S + C cos’a)

L h@
Y cos ¢
Finally, the above equations can be identified with the effective

dioptric power matrix P(¢), depending on the tilt angle ¢, result-
ing in the central equation of this paper

P, D,

p(6) = hio)| 5" P (32)
Twp
cos & Y

It is worth mentioning that P(¢) does not depend on the sign of
& because P(d) = P(—¢) is an even function of the tilt angle.
Additionally, P(¢) reduces to Py, in the case of no tilt, d = 0. Our

main result may also be written more formally as

P(d) = T(d) P, T(d) (33)
where
1
T= \h($p)| cosd (34)
0 1

In case of a pantoscopic tilt, with s, = 0, which is not considered
further here, the diagonal elements of T have to be exchanged
according to the exchanged directions of p and q. However, the
case of a spectacle lenses with a pantoscopic tilt only is of little
interest. If the lens is mounted according to the center of rotation
condition,” i.e., the optical axis of the lens passes through the eye’s
center of rotation, the angle of incidence at the optical center of the
lens is zero. Simply, there is no central refraction to be dealt with.
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The mixed case of pantoscopic and faceform tilts needs more at-
tention. A thorough analysis of this situation, however, is given by
Keating.2

COMPARISON WITH THE KEATING EQUATION

Keating’s result for the effective dioptric power matrix, Equa-
tion 15 in his paper,1 is given by

P.T. P_H.
P(d)) = ( P.H PYS ) (35)

Xyt ‘e yYc

He used the abbreviations
g - sin’d _ 6
=1t == ($) (36)
_2nt sin’d _ 5
T = oy — h(@eos'd

(37)

The diagonal elements of his matrix are therefore identical with
those of Equation 32. The off-diagonal elements are slightly dif-
ferent, because Keating assumed in Equation 16 of his paper the
arithmetic mean

1 1
=1 = - o
Hc - 2(55 + Tc) h(¢)|:2 (1 + C052¢>:| (38)
to multiply the elements P, However, our result, Equation 32,
shows that the geometric mean instead leads to the correct factor

\S.Te = \h(p)/cos’d = h(dp)/cos ¢ (39)

Therefore, the Keating equation has to be slightly modified by
substituting the factor 38 by the factor 39. The numerical differ-
ence between both factors makes up to 0.012 at an angle of ¢ =
30°. Matrix elements of the order of 20 D are necessary to reach the
clinical threshold of 0.25 D. Therefore, the numerical difference is
clearly negligible for all practical purposes. With higher angles, this
difference will increase. However, the whole approach will then
loose accuracy due to the limitation of the third-order approxima-
tion. Therefore, the wave tracing equations lead to a vindication of
the Keating equation for the effective spherocylindrical parameters
of a tilted lens.

COMPENSATING PARAMETERS

In this section, we repeat the procedure for determining the
parameters of a compensating lens using the slightly modified
Keating equation. If the tilted spectacle lens must match an R of
S/C X a with a related dioptric power matrix

PX ny
Pv=\p_ p

Xy y

(40)

then the effective power matrix of the tilted lens P(¢) must be
equal to Py, to reproduce the desired prescription values in the
tilted position. Therefore, the spherocylindrical parameters of a
compensating lens must be determined from the matrix

P(c) P(C)
P = ( PO po ) =T ()P T '(d) (41)
Xy y
or explicitly
1 P, cos’d P cosd
©@=_—_[ * v
F h<¢>< Pycosd D ) @

where P, P, and P, belong to the given R, values. The com-
pensating prescription values are found from the relations

CY9 = = [Tr(P)P — 4 dee(P®)

(43)
S© = %(Tr(P(C)) — CY)
5 —pY
tan a9 = P9
where the trace of a matrix is defined as
Tr(PY) = PY + PY (44)
and the determinant is given by
dex(P¥) = POPY — PO (45)

This nontrivial calculation of the parameters SOICO X @©
makes it difficult to imagine how this compensation could be
determined without the help of the Keating equation, or more
generally, without the help of the dioptric power matrix approach.

EFFECTIVE TILT ANGLE AND PRISMATIC EFFECTS

In the above considerations, it is assumed that the tilt angle is
known. However, its determination might be a more complicated
story. As a first step, the tilt angle of the faceform tilted frame may
be used as a proxy to the tilt angle of the lens itself. The frame-
related angle is easily determined by using a scanner or a copy
machine to image a projection of the frame. This image allows the
tilt angle of the frame to be evaluated, either by hand or using
software, to an accuracy of around 1°.

Next, the lenses have to be fitted to the frame according to the
interpupillary distance. Remember that the fitting coordinates
change due to the projective geometry of the tilted frame. If the
lens has to be cut unsymmetrically, which is nearly always the case,
and a facette parallel to the front surface is applied, then this might
lead to an effective rotation of the lens, resulting in a difference
between the frame tilt and the lens tlt (J. Hoffmann, personal
communication). Moreover, this difference also depends on the
base curve F; of the lens and on the lens center thickness d. With-
out further information on the geometry of the lens, the problem
of the effective tilt angle cannot be solved. However, a thorough
investigation of these problems is beyond the scope of this article.

As soon as the lens is not thin in the ideal sense, the tilted lens
will introduce prismatic effects. Proceeding against the light direc-
tion with a ray height of zero at the back surface, the paraxial
approximation estimates the prismatic effect p as

d A
p=100 Fd (46)
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where the tilt angle ¢ is measured in radians. For example, a base
curve of 8 D, a reduced thickness of d/n = 3 mm, and a tilt angle
of & = 0.35 (20°) induces a prismatic effect of 0.8A for each eye,
adding up to a horizontal prismatic load of 1.6A base-out, which
should be offset by a compensating prismatic value of opposite
orientation, namely base-in. The direction of the prismatic load is
independent of the dioptric power. Even tilted frames worn with-
out any correction suffer from this effect. Furthermore, the sign of
the correction has no influence on the direction of the resulting
prismatic load. Again, data from the actual lens are needed to
provide a more accurate estimate.

CONCLUSION

The Keating equation enables the correct dispensing of spectacle
lenses within faceform tilted frames. An analytical derivation of
this equation has been given in this paper, leading to a slight
modification of the Keating equation, which can be neglected from
a numerical point of view.

A word of caution concludes this paper. Beside the prismatic
effects, which have to be dealt with separately, the application of
the Keating equation strictly compensates the effects of a tilt under
the assumption of the OCR for one point only. The field of view of
optimal vision is restricted by aberrations that rise quickly if the
line of sight lies away from the optical center of the lens. Therefore,
in cases of tilt angles as large as 30° and more, which are favored by
the most fashionable frames, they should not be dispensed with
tilted correcting glasses if they are worn in situations where undis-
turbed visual information from a larger field of view is critical.

APPENDIX

Immersed Tilted Lens

The above results are limited to tilted lenses in air. It might be
interesting to consider an immersed tilted lens, e.g., an intraocular
lens, which may also suffer tilting 77 situ. In this case, where the
lens, with index n, is surrounded by a medium of index n*, which
is the same on both sides of the lens, the above results can be
generalized in a straightforward way. Equations 19 and 25 have to
be substituted by the following expressions

5= (n—n*)(c" — ) (47)
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C=—n)( )

S+ C=(n—n*(" - )

*

In®
h((i)): 1 +E;SIH¢

(48)

The case in which the index is not the same on either side of the
lens, as in the case of the cornea for example, is more complicated.
This situation needs a detailed study and is not considered further
in this paper.
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