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1. INTRODUCTION
As a map, scaled 1:1, is of little use to hikers, not all the
aberration data that are accessible by the numerical
analysis of optical systems can guide the process of optical
design. On the contrary, this process depends heavily on
data reduction and visualizing schemes. For centered
image-forming systems, various performance plots are
frequently used, such as longitudinal and transverse ab-
errations and optical path differences.1,2

An additional tool is the offense against the sine
condition1 (OSC). For a centered optical system (COS), it
allows for off-axis information by the evaluation of on-axis
data only. The generalized OSC was derived by
Hopkins3 for a general noncentered optical system
(NCOS) by means of geometrical optics. We pick up this
topic in the language of Fourier optics as developed in
Refs. 4–6. Recently Mansuripur7 reviewed the sine con-
dition (SC). The link between considering the image of a
diffraction grating and the Fourier optics approach was
discussed in Ref. 8.

In 1873 Abbé applied the SC to microscope objectives
for the first time. Because these microscope lenses are
characterized by a small field of view and a large aper-
ture, they are still the typical examples for the use of the
OSC. Nevertheless, times changed, and microscope ob-
jectives and their applications did as well.

Some problems encountered today in the fabrication of
microscope objectives provide a practical motivation for
reconsidering the OSC. For metrology applications in
the semiconductor industry, such as optical control of mi-
crochips, only high-end objectives are mandatory. They
are nominally designed for a Strehl value greater than
99% for the field point on the optical axis. Additional ab-
errations, i.e., coma and astigmatism, are introduced at
this point in production by decentrations, tilts, and sur-
face errors. Nevertheless, a Strehl ratio greater than
97% for the produced objectives is sometimes required.
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This value has been found to be reasonable for referring
to these objectives as production limited.9 The practical
manner of achieving such a specification during assembly
is discussed in Refs. 9 and 10. Moreover, for the so-called
box-in-box overlay measurements (with a repeatability of
some 5 nm) the performance of objectives, even if they are
production limited, may depend crucially (besides other
factors) on the variation of the remaining aberrations
across the small imaged patch (typically some 60 mm in
diameter). Asymmetric aberrations, i.e., coma, lead to
systematic errors in the measured results. To study this
problem the OSC (which is a property of the patch) is a
higher-quality parameter than the Strehl ratio (evaluated
for only one object point). This example features the
typical conditions—high numerical aperture (up to 0.95
times the refractive index), small field, and NCOS—for
applying the OSC and understanding the symmetry prop-
erties of the related aberrations.

In the present paper our approach is tailored, for sim-
plicity, to a perturbated symmetrical optical system
(PSOS). A PSOS (which is a special case of NCOS) is
produced when an image-forming system is designed to
be a COS but undergoes small manufacturing perturba-
tions (decentrations and tilts) that transform it into a de-
centered system with one symmetry plane (this is ex-
plained in detail in Subsection 2.A). Throughout, we
compare the results obtained for a PSOS with those ex-
pected for the reference COS. The surfaces of the object
and the receiving screen of the PSOS are planes parallel
to each other coinciding with those of the corresponding
COS. To simplify the analysis, we confine our attention
to object points in the neighborhood of the symmetry
plane, although a generalization to other points is pos-
sible. To make the calculations easier we consider sys-
tems that are not telecentric. Moreover, we exclude from
our analysis infinite conjugates, because these would ob-
scure our line of reasoning. (If the PSOS is a microscope
1999 Optical Society of America
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objective designed for the image plane at infinity, we in-
clude a tube lens that renders a finite image distance.)

Our approach is applicable to any image-forming sys-
tem where the control of aberrations is critical (such as
high-definition photography objectives) provided that ob-
ject points in the neighborhood of the symmetry plane are
considered. Nevertheless, it is especially useful for mi-
croscope objectives since, on the one hand, these often
verify the conditions mentioned in the preceeding para-
graph and, on the other, they require extremely strict con-
trol of residual aberrations because of their high numeri-
cal apertures.

We obtain the generalized sine condition by means of
Fourier optics and relate its offense to the field deriva-
tives of the wave-front-aberration function. In addition,
we give the complete set of equations that can be used to
study decentration tolerances for a PSOS by means of ray
tracing. We also discuss the symmetry properties of ab-
errations. Tracing rays that are emanating from a fixed
reference object point and applying the derived equations,
the designer can gain insights into the aberrations that
correspond to neighboring object points.

2. NOTATION
A. Perturbed Symmetrical Optical System
We consider as a reference optical system an undisturbed
objective as it is usually designed, namely, as a COS.
The object and image planes, S and S8, respectively, are
perpendicular to the optical axis z. The on-axis field
point (the central object point) is termed Õo . The en-
trance and exit pupils11 are centered at axial points Ẽo

and Ẽo8 , respectively (see Fig. 1).
After being manufactured, the objective presents de-

centration and tilts of single lenses or lens groups and
surface errors. It is rendered as a NCOS in the general
sense. A first step in the approach to describe this sys-
tem is the assumption of small perturbations. This al-
lows for a linearized treatment of the individual contribu-
tions to the resulting overall aberrations. Each
combination of decenterings can be compensated for by
one shifting element, each combination of tilts can be lev-
eled out by a tilt of the image plane, and each combina-
tion of surface errors can be neutralized by the rotation of
a lens that has surface errors.

Fig. 1. Coordinate system for the reference COS: S and S8, ob-
ject and image plane surfaces; PE and PS, entrance and exit pu-
pil planes; z, optical axis; ( j̃o , h̃o) @( j̃o8 , h̃o8)#, coordinates at the
object (image) with origin at Õo (and at its image); (xo , yo)
@(xo8 , yo8)#, coordinates at the entrance (exit) pupil with origin at
Ẽo (Ẽo8).
Through the work of Simon and Comastri,6 the concep-
tual starting point for a general treatment, the optical in-
variant, has been derived for a general NCOS. Never-
theless, here we consider the constraint to an optical
system with small decentrations and tilts (no surface er-
ror) such that there is a symmetry plane, that is, the con-
straint to a PSOS. The reason behind this restriction is
to simplify the calculation and consider the case of high-
est practical interest, i.e., coma. As an elementary ex-
ample, one may consider a PSOS with one decentration
only, which is compensated for by the appropriate ele-
ment. This configuration clearly features a symmetry
plane. A better understanding of the OSC even for this
restricted case gives us more insight into the behavior of
aberrations. A simple approximation to the more gen-
eral case of some decentrations, not necessarily oriented
in one symmetry plane, is to combine all effects into a
single aggregated one, and together with the shifting ele-
ment they again yield a symmetry plane. Then we could
apply our results to the more general case as well, as long
as the approximation of the optical system to a PSOS is
valid (this holds if Hopkins’s basic theorem3 is appli-
cable).

B. Coordinate Systems
The surfaces of the object and receiving screen are planes
parallel to each other that coincide with the surfaces S
and S8, respectively, of the reference COS. These sur-
faces are maintained throughout the paper even when
tilts are present; that is, the compensation of these tilts
by a tilt of the image plane is not contemplated. We con-
sider arbitrary aperture reference planes at the entrance
and the exit P and P8, respectively (which may coincide
but are not necessarily the entrance and the exit pupil
planes of the reference COS).

To describe the PSOS there are three types of coordi-
nate systems3: base, local, and canonical (see Appendix
A). The coordinates used in the calculations are the ca-
nonical ones, so in what follows, only these are considered
(see Fig. 2). We take into account a reference object point
Qj in the symmetry plane (the subscript j is used to stress
this fact). The base ray (central ray of the beam) Qj E
intersects the plane P at point E, the plane P8 at point
E8, and the plane S8 at point Qj8 (considered as the geo-
metrical image of Qj

3).
The canonical coordinates in the object are (jT , hS , z)

with origin in point O, defined as the foot of the perpen-
dicular from E to the object plane S. These coordinates
are chosen as follows: jT is the intersection of the sym-
metry plane with the plane S, z is along OE, and hS is
perpendicular to the symmetry plane. Similarly, in the
image we have coordinates (jT8 , hS8 , z8) (all primed vari-
ables belong to image space).

The canonical coordinates in the entrance and exit ref-
erence spheres are (XT , YS , Z) and (XT8 , YS8 , Z8) with
origin at E and E8, respectively and Z (Z8) on the prolon-
gation of z (z8). The systems (XT , YS , Z) and
(XT8 , YS8 , Z8) are parallel to (jT , hS , z) and (jT8 , hS8 , z8),
respectively. With use of vector notation and two compo-
nents only, the canonical coordinates at the entrance and
exit reference spheres of a general ray from Qj are
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Fig. 2. Canonical coordinate systems for the object point Qj of the PSOS: S and S8, object and image plane surfaces; P and P8,
entrance and exit aperture planes; Qj , object point; QjE, base ray; O (O8), foot of the perpendicular from E (E8) to S (S8); B and B8,
points where the general ray from Qj intersects the reference spheres; (XT , YS) @(XT8 , YS8 )#, canonical axes in the entrance (and exit)
reference spheres; (jT , hS) @(jT8 , hS8 )#, canonical coordinates in the object (image); Q̃, object point in the neighborhood of Qj with image
at Q̃8; (djT8 , dhS8 ), relative canonical coordinates in the image for Q̃8; Dj8 , Dh8 , transverse aberration for the general ray from Qj .
x 5 ~XT , YS!, x8 5 ~XT8 , YS8 !, (1)

where boldface indicates that the mathematical character
is a vector.

The radius of the local entrance reference sphere is
termed R 5 EQj and has curvature center at Qj . Cor-
respondingly, R8 5 E8Qj8 is the radius of the local exit
reference sphere (in Fig. 2, R is negative and R8 is posi-
tive). A general ray from Qj intersects the entrance and
exit reference spheres at points B and B8, respectively,
and the image plane S8 at point M8, since there might be
transverse aberrations D 5 (Dj8 , Dh8) (measured from
Qj8).

Because we are interested in variations of the optical
path difference related to small shifts of the field point,
we consider a general third object point, Q̃ (not necessar-
ily in the symmetry plane) in the neighborhood of Qj .
For this point, Q̃E...E8Q̃8 is the image-space associated
base ray, defined as that which intersects the same point
E8 of the exit reference sphere as does the base ray from
Qj .3 Again the intersection of the base ray with S8,
point Q̃8, is considered the geometrical image point of Q̃.3

For Q̃ we have the same pupil locations as for Qj but ac-
cordingly adjusted radii R̃ 5 Q̃E and R̃8 5 E8Q̃8. The
canonical coordinates at the object (and image) plane for
Q̃ are ( j̃T , h̃S) @( j̃T8 , h̃S8 )# with origin at point O (O8).
We define relative canonical coordinates in the object
( j̃T 2 jT , h̃S 2 hS) and in the image ( j̃T8 2 jT8 , h̃S8
2 hS8 )3 (hS 5 hS8 5 0 for Qj). With vector notation, the
relative canonical coordinates in the object and the image
are the row vectors
dC 5 ~djT , dhS! 5 ~ j̃T 2 jT , h̃S 2 hS!,

dC8 5 ~djT8 , dhS8 ! 5 ~ j̃T8 2 jT8 , h̃S8 2 hS8 !. (2)

The subscripts T and S for the canonical coordinates
are used following Hopkins,3 but for a PSOS these coordi-
nates coincide with the local ones (see Appendix A), so to
avoid tedious notation in what follows, we suppress them.

3. SINE CONDITION BY USE OF FOURIER
OPTICS AND ITS OFFENSE
A. Fourier Optics Approach
For a patch on the object plane, the complex field can be
Fourier decomposed, and each component can be identi-
fied as a plane wave.12 The shape of each wave front is
distorted as it propagates through the system, and its
evaluation is as difficult as the computation of aberra-
tions. Nevertheless, we can link a ray to each wave front
and expand the wave-front-aberration function around
this ray. The zeroth- and first-order terms are deter-
mined by the optical path and inclination of the ray and
correspond to a plane wave front. The superposition of
all the plane wave fronts emanating from the object and
captured by the optical system is an adequate description
for the field in a small patch if the origins of the expan-
sions corresponding to every wave front coincide. This
holds precisely at the image of the reference object point
where, up to first order, all the rays intersect. Then in
both the object and the image we consider small patches
surrounding the reference point and associate with the
Fourier expansion a superposition of plane waves. Each
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plane wave at the image corresponds to a plane wave at
the object. In what follows we give the corresponding
formulas.

The complex field at the object, U(dj, dh), is

U~dj, dh! 5 E
2`

`

Û~nx , ny!

3 exp$2i@2p~nxdj 1 nydh!#%dnxdny , (3)

with generalized spatial frequencies n 5 (nx , ny) and am-

plitude or angular spectrum Û(nx , ny).4,12,13 We specify
each ray by a normalized or unit ray vector (sx , sy , sz)
(with sx

2 1 sy
2 1 sz

2 5 1 so that each component is a direc-
tion cosine). It is usually convenient4,6 to refer the ray
directions to a fixed base ray (often the principal when a
COS is considered) with a unit ray vector (spx , spy , spz).
In the following we use two independent components
only, written as s 5 (sx , sy) and sp 5 (spx , spy). Given a
general ray with the direction (sx , sy , sz), we link to it
the vector of generalized spatial frequency,

n 5
n
l

~s 2 sp!, (4)

where l is the vacuum wavelength and n is the refractive
index in object space.

Each plane wave front present at the object plane and
captured by the optical system is focalized in the second
focal plane14 and gives rise to a quasi-spherical wave
front at the image plane. The complex field at the image,
U8(dj8, dh8), is

U8~dj8, dh8! 5 EE
2`

`

Û8~nx8 , ny8!exp$2i@2p~nx8dj8

1 ny8dh8! 1 b(~dj8!2 1 ~dh8!2)

1 o~dj8, dh8!#%dnx8dny8 , (5)

where 2p(nx8dj8 1 ny8dh8) corresponds to the expansion of
each wave front up to first order, b takes into account its
curvature, and o(dj8, dh8) is a correction to the spherical
wave front that appears as a result of aberrations. For
small aberrations, b and o(dj8, dh8) can be assumed in-
dependent of spatial frequency, and the phase factor
exp$ib@(dj8)2 1 (dh8)2# 1 o(dj8, dh8)% can be written outside
the integral and disappears when the intensity is com-
puted. Then U8(dj8, dh8) is equivalent to a superposi-
tion of plane waves with generalized spatial frequencies

n8 5
n8

l
~s8 2 sp8 ! (6)

such that each spatial frequency n8 corresponds to a fre-
quency n.

It is worth pointing out that often intensities, instead of
fields, are associated with the picture of geometrical opti-
cal rays. Furthermore, the modulation transfer function
(MTF) is related to intensities as well. To work in the
framework of intensities, first the fields at the object and
image are considered,12,15 and the relation between their
angular spectrums is the coherent optical transfer func-
tion (COTF). Once the COTF is known, the incoherent
optical transfer function (OTF) (whose modulus is the
MTF) can be found as the autocorrelation of the COTF.
A basic hypothesis to make these calculations possible is
the achievement of local isoplanatism. The fulfillment of
the SC is a necessary condition for isoplanatism, and the
OSC limits the size of isoplanatic patches and must be
analyzed in the framework of field distributions. After-
ward the analysis in intensities can be carried out by
means of the relation between the COTF and the OTF.

Moreover, in Eq. (3) we consider a field distribution but
do not discuss its origin, which depends on the illumina-
tion and boundary conditions in the object. A recent nu-
merical approach to this problem with applications to mi-
croscope objectives is given by Totzek and Tiziani.16

B. Generalized Sine Condition
To obtain the generalized SC by means of Fourier
optics,4,6 we require each Fourier component present in
the object [see Eq. (3)] and captured by the optical system
to also be present in the image [see Eq. (5)] and to have
the same value for any object point Q̃ (in a small patch
surrounding Qj) and its corresponding image point Q̃8.
This value is

nxdj 1 nydh 5 nx8dj8 1 ny8dh8. (7)

To show why this must hold, let us assume, for simplic-
ity, that the object is a fringe pattern generated by the in-
terference of only two beams, one associated with a spa-
tial frequency nx1 and the other with nx2 (ny1 5 ny2
5 0). If the two frequencies have the same angular
spectrum, then Û(nx , ny) 5 A@d(nx 2 nx1) 1 d(nx
2 nx2)]d (ny) [d ( ) is the delta Dirac function]. With use
of Eq. (3), the field distribution at the object is U(dj, dh)
5 A@exp(2i2pnx1dj) 1 exp(2i2pnx2dj)#. The two beams
must be captured by the optical system to reproduce this
pattern in the image. The beams corresponding to nx1
and nx2 originate beams associated with nx18 and nx28 , re-
spectively, at the exit. The angular spectrum at the exit
is Û8(nx8 , ny8) 5 A8@d(nx8 2 nx18 ) 1 d(nx8 2 nx28 )#d(ny8).
From Eq. (5), the field at the image (ignoring quadratic
and higher-order terms) is U8(dj8, dh8)
5 A8@exp(2i2pnx18 dj8) 1 exp(2i2pnx28 dj8)#. If the fringes
in the object are well reproduced in the image and if A8
5 A, we must have exp(2i2pnx18 dj8) 1 exp(2i2pnx28 dj8)
5 exp(2i2pnx1dj) 1 exp(2i2pnx2dj). This is possible for
every value of nx2 if nx18 dj8 5 nx1dj. Since nx1 can be
any frequency, Eq. (7) must hold.

For a PSOS and with canonical axes,3 Eq. (7) splits in
two; i.e.,

nxdj 5 nx8dj8, nydh 5 ny8dh8, (8)

and the local transverse magnification matrix m,6 defined
by (d C8)T 5 m 3 (d C)T (the superscript T indicates
transpose), is diagonal. Calling mx 5 m11 and my
5 m22 , we have

dj8 5 mxdj, dh8 5 mydh. (9)

To obtain good imagery in the neighborhood of Qj8 , mx
and my must be constant, and combining Eqs. (8) and (9)
we get

nx8 5 nx /mx , ny8 5 ny /my . (10)
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Equations (10) are the generalized SC for our PSOS
and states that the ratio between a spatial frequency at
the image and its corresponding one at the object is equal
to a constant that is the inverse of the lateral magnifica-
tion. According to our previous paper,6 for a general
NCOS the generalized SC in the language of the Fourier
optics approach can be paraphrased as follows: Each
generalized spatial frequency present in the object and
captured by the optical system gives rise in the image to a
generalized spatial frequency that differs from it only by
an overall constant factor M, which is a 2 3 2 matrix;
that is, n8 5 M 3 n [where M 5 (mT)21]. That is, good
imagery of the patch is achieved if each spatial frequency
at the image is proportional to the corresponding one at
the object so that the superposition of frequencies at the
object is reproduced at the image. This must also hold
for the wave fronts associated with these frequencies [ex-
cept for the phase factor of Eq. (5) independent of fre-
quency]. When this proportionality fails, there is a mis-
adjustment leading to errors in the image that are
evaluated with the OSC.

C. Variation of the Aberration with Field in Terms of
the Offense against the Sine Condition
Usually a PSOS does not satisfy the SC [Eqs. (10)]. Con-
sidering a hypothetical ray that obeys the SC, i.e., the
unit ray vector (shx8 , shy8 , shz8 ) is such that the associated
frequency nh8 is

nh8 5 ~nhx8 , nhy8 ! 5 S nx

mx
,

ny

my
D , (11)

the OSC can be written as

dn8 5 n8 2 nh8 5 ~dnx8 , dny8! 5 S nx8 2
nx

mx
, ny8 2

ny

my
D Þ 0.

(12)

The OSC is related to the variation of the aberration
function with field coordinates. To obtain the variation
of W with dj8 in terms of dnx8 , we first consider, for sim-
plicity, light beams in the symmetry plane (sy 5 spy

5 0). If the transverse aberrations for Qj and for Q̃ are
zero, we have the situation shown in Fig. 3. A plane
wave front emanating from the patch surrounding Qj

gives rise at the image to a real locally plane wave front
Qj8 J. We also consider an auxiliary hypothetical plane
wave front Qj8 I. The wave front Qj8 J is perpendicular to
a general real ray from Qj that does not obey the SC (that
is, nx8 5 nx /mx 1 dnx8), and the wave front Qj8 I is perpen-
dicular to the hypothetical ray that obeys the SC. Let
d W be the increment in the wave-front aberration that
results from the shift of the image point from Qj8 to Q̃8,
i.e., a distance dj8, when the inclinations of the rays are
maintained constant (plane wave fronts). The optical
path difference dW is measured along the real ray, per-
pendicular to the wave front and from the hypothetical
wave front to the real one, i.e., dW 5 n8IJ. To calculate
IJ we consider
sx8 5
JQ̃8

dj8
, shx8 5

IQ̃8

dj8
,

sx8 2 shx8 5
~JQ̃8 2 IQ̃8!

dj8
5

2dW
n8dj8

. (13)

Since dnx8 5 nx8 2 nhx8 5 (n8/l)(sx8 2 shx8 ), in the limit of
small field size (Q̃8 near Qj8) we get

]W
]~dj8!

U
u8

5 2ldnx8 , (14)

where u8 5 (ux8 , uy8) is the (nongeneralized) spatial fre-
quency associated with the plane wave front perpendicu-
lar to the real unit ray vector (sx8 , sy8 , sz8), that is,

u8 5
n8

l
s8. (15)

Usually in a real PSOS the transverse aberrations for the
object points Qj and Q̃ are not zero, and the general real

rays from these points arrive at M8 and M̃8, respectively,
instead of at Qj8 and Q̃8 as in Fig. 3. Nevertheless, here
we can neglect the variation of transverse aberration with

field so that Qj8M8 ' Q̃8M̃8 and Eq. (14) is valid. More-
over, for beams not necessarily in the symmetry plane,
Eq. (14) still holds.5 Similarly, the variation of W with
dh8 can be written in terms of dny8 . Then the variations
of the aberration function with field for u8 constant are

]W
]~dj8!

U
u8

5 2ldnx8 ,
]W

]~dh8!
U

u8

5 2ldny8 . (16)

4. FIELD DERIVATIVES OF THE WAVE-
FRONT ABERRATION
When optical systems are designed, the aberration func-
tion is usually considered to depend on aperture [Eqs. (1)]
and field [Eqs. (2)] coordinates. Let WQ

j8
5 W(x8, 0) and

WQ̃8 5 W(x8, d C8) be the aberration functions for a gen-

Fig. 3. Two locally plane wave fronts arriving at the ideal image
point Qj8 .
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eral ray from Qj and for the image-space associated ray,3

respectively, from Q̃. The aberration function corre-
sponding to point Q̃ is estimated (up to first order) as fol-
lows:

W~x8, d C8! 5 W~x8, 0 ! 1
]W

]~dj8!
U

x8,d C850

~dj8!

1
]W

]~dh8!
U

x8,d C850

~dh8!. (17)

The expressions for ]W/](dj8)ux8,dh8 and for
]W/](dh8)ux8,dj8 in terms of variables that are computed
through ray tracing can be written in terms of the OSC by
use of Eqs. (16). We do this in two steps. In the first
step we write dn8 as a function of x8. In the second we
find expressions for the field derivatives of the aberration
function for constant aperture coordinates in terms of the
variations given in Eqs. (16).

A. Relation between Coordinates and Frequencies
The generalized spatial frequencies in object space can be
related to x by

n 5
n
l

~s 2 sp! 5
n

l~2R !
x. (18)

In image space, because of aberrations, we have to apply
the approximations B8M8 ' R8, X8 2 j8 2 Dj8
' 2R8sx8 , and Y8 2 Dh8 5 2R8sy8 , yielding

n8 5
n8

l
~s8 2 sp8 ! 5

n8

lR8
~D 2 x8! 1 O~2 !, (19)

where we neglect all terms of order 2 or higher in aper-
ture coordinates, signed O(2) [e.g., (X8/R8)2]. Up to the
considered order there is a decoupling of the components
of the generalized spatial frequencies n8, the pupil coordi-
nates x8, and the transverse aberrations D; i.e., nx8 (ny8)
does not depend on Y8 (X8) or on Dh8 (Dj8). Defining

xm 5 S X
mx

,
Y

my
D (20)

and applying Eqs. (18) and (19), we write the OSC of Eq.
(12) as

dn8 5
~21 !

l S n8

R8
x8 2

n
R

xmD 1
n8

R8l
D. (21)

B. Field Derivatives of W for Constant Aperture
Coordinates
The expression for ]W/](dj8)ux8,dh8 is obtained by taking
into account that the aberration function for a patch sur-
rounding the reference field point Qj can be thought of as
function of the variables (u8, d C8) or (x8, d C8) [see Eq.
(19) with (spx8 , spy8 , spz8 ) constant because Qj is a fixed
point]. Then we have17

]W
]~dj8!

U
x8,dh8

5
]W

]~dj8!
U

u8

2
]W
]X8

U
Y8,d C8

]X8

]~dj8!
U

u8

2
]W
]Y8

U
X8,d C8

]Y8

]~dj8!
U

u8

. (22)
The different terms of Eq. (22) can be evaluated as fol-
lows:

]W
]~dj8!

U
u8

.

This derivative is related to the OSC by Eqs. (16).

]W
]X8

U
Y8,d C8

and
]W
]Y8

U
X8,d C8

.

These aperture derivatives can be written in terms of
variables computed by means of ray tracing with the
well-known3,4 formulas for the transverse aberration;
which are

]W
]X8

U
Y8,d C8

5 2
n8Dj8

R8
,

]W
]Y8

U
X8,d C8

5 2
n8Dh8

R8
. (23)

]X8

]~dj8!
U

u8

and
]Y8

]~dj8!
U

u8

.

The exit reference sphere coordinates X8, Y8, and X̃8,
Ỹ8 for the light beams from Qj and Q̃, respectively, can be
calculated from Fig. 2 and Eq. (19). We have spy8 5 0,
h8 5 0, dh8 5 h̃8 Þ 0, and here u8 5 (n8/l) s8 is con-
stant; then (up to first order) the result is

X8 5 Dj8 1 j8 2
ux8lR8

n8
, Y8 5 Dh8 2

uy8lR8

n8
,

X̃8 5 Dj̃8 1 j̃8 2
ux8lR̃8

n8
, Ỹ8 5 Dh̃8 1 h̃8 2

uy8lR̃8

n8
.

(24)

From Fig. 2 we get

j8

R8
5 spx8 , R8 5 @j82 1 ~E8O8!2#1/2,

R̃8 5 @~j8 1 dj8!2 1 ~dh8!2 1 ~E8O8!2#1/2

' R8 1
j8dj8

R8
; (25)

then in the limit of small field size (small dj8) we have

R̃8 2 R8 ' j8dj8/R8, (Dj̃8 2 Dj8) ' 0, and (Dh̃82 Dh8)
' 0. Therefore from Eq. (24) we obtain

]X8

]~dj8!
U

u8

5 1 2
sx8j8

R8
5 1 2 sx8spx8 ,

]Y8

]~dj8!
U

u8

5 2
sy8j8

R8
5 2sy8spx8 . (26)

Substituting Eqs. (16), (23), and (26) into Eq. (22) yields
the field derivative as

]W
]~dj8!

U
x8,dh8

5 2ldnx8 1
n8Dj8

R8
~1 2 sx8spx8 !

1
n8Dh8

R8
~2sy8spx8 !, (27)
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which can be written in terms of variables computed by
means of ray tracing with use of Eq. (21) for dnx8 .

The expression for ]W/](dh8)ux8,dj8 is obtained by con-
sidering that Eq. (22) is valid if we interchange dh8 and
dj8. From Eq. (24) we have

]X8

]~dh8!
U

u8

5 0,
]Y8

]~dh8!
U

u8

5 1, (28)

so that with reasoning similar to that for the other deriva-
tive, we obtain

]W
]~dh8!

U
x8,dj8

5 2ldny8 1
n8Dh8

R8
. (29)

In Appendix B we compare our results with those of Hop-
kins.

According to Eqs. (27) and (29) the field derivatives of
the wave-front-aberration function are related both to the
OSC and to transverse aberrations. These equations can
be used to define the size of the isoplanatic patch that al-
lows a given tolerance in the variation of the aberration
function [see Eq. (17)]. That is, if px . 1 and py . 1 are
conveniently predefined numbers and if bars indicate ab-
solute value, the requirements udj8 ]W/](dj8)u
5 1/pxuW(xI 8, 0)u and udh8 ]W/](dh8)u 5 1/pyuW(xI 8, 0)u
yield the allowed values of dj8 and dh8.

Furthermore, when systems are designed, various
merit functions, such as the wave-front-aberration vari-
ance, the Strehl ratio, the COTF, and the MTF5,12,15 are
in common use. All these functions depend on the aber-
ration function W, and this is such that its field deriva-
tives depend on the OSC [Eqs. (27) and (28)]. Then the
OSC is related to the field derivatives of these functions.
If a merit function and its field derivative are evaluated
for the reference image point, then [with use of Eq. (17)]
the merit function can be estimated for neighboring im-
age points. Which merit function is adequate depends on
which performance is required for the system under con-
sideration. To study decentration tolerances for a PSOS,
it is probably more useful in many applications (for ex-
ample for box-in-box overlay measurements) to define a
parameter that characterizes the symmetry of the image.

5. EQUATIONS AVAILABLE AND
SYMMETRY OF ABERRATIONS
With use of Eqs. (12), (18), and (19), Eqs. (27) and (29) can
be also written in terms of the direction cosines corre-
sponding to real rays. When we take this into account
and use Eqs. (23), remembering that X8, Y8, dj8, and dh8
are canonical coordinates, and if square brackets denote
optical pathlength, the complete set of equations avail-
able for each ray traced from Qj is
W 5 @QjE8# 2 @QjB8#,

]W
]X8

U
Y8,dj8,dh8

5 2
n8Dj8

R8
,

]W
]Y8

U
X8,dj8,dh8

5 2
n8Dh8

R8
,

]W
]~dj8!

U
X8,Y8,dh8

5 2n8~sx8 2 spx8 ! 1
n

mx
~sx 2 spx!

1
n8Dj8

R8
2

n8spx8

R8
~Dj8sx8 1 Dh8sy8!,

]W
]~dh8!

U
X8,Y8,dj8

5 2n8sy8 1
n

my
sy 1

n8Dh8
R8

. (30)

In these equations the different behavior of the field de-
rivatives in the directions along and perpendicular to the
symmetry plane when the system is a PSOS is evident.
For a COS we have the same equations formally, but from
the symmetry properties it results that ]W/](dh8) does
not yield an equation independent of the other four.4 For
a PSOS these five equations are independent and com-
pletely useful. According to Eq. (17), the aberration func-
tion for image points in the neighborhood of Qj8 can be es-
timated (up to first order) only by tracing rays from the
reference object point Qj and using Eqs. (30).

It is often useful to study separately the influence of
even (subscript e) and odd (subscript d) aberrations
present at Qj8 on the aberrations at the neighboring image
points. For example, for the box-in-box overlay measure-
ments in the microscope industry there are systematic er-
rors in the measured positions that depend on the sym-
metry of the aberrations.

In Eq. (17), W(x8, 0) and its field derivatives depend
only on (X8, Y8). Since the plane Y8 5 0 is the symme-
try plane, all aberrations are even functions of Y8. Then
to analyze the parity we consider only the dependence on
X8. With vector notation, Eq. (17) is

w~X8! 5 wi~X8! 1 @V~X8! 1 A~X8!#~d C8!T, (31)

where

w~X8! 5 W~x8, d C8!, wi~X8! 5 W~x8, 0 !,

Vx~X8! 5 2ldnx8 , Vy~X8! 5 2ldny8 ,

Ax~X8! '
n8Dj8

R8
, Ay~X8! 5

n8Dh8
R8

. (32)

In the equation for Ax(X8) we neglect the
term @(n8s8px)/R8#(Dj8sx8 1 Dh8sy8) in comparison
with (n8Dj8)/R8 because sx8 < 1 and spx8 ! 1. In
Eq. (31), V(X8) 5 @Vx(X8), Vy(X8)# and A(X8)
5 @Ax(X8), Ay(X8)# are row vectors and (d C8)T

5 (dj8, dh8)T is a column vector. We consider three
items:
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i. Aberration function

w~X8! 5 we~X8! 1 wd~X8!. (33)

The function we(X8) contains the even terms in X8 of the
aberration-function expansion18: spherical aberration,
astigmatism, and field curvature. The function wd(X8)
contains odd terms in X8: distortion and coma.

According to Eq. (31) an even aberration function at Qj
introduces an even aberration function at Q̃8. For ex-
ample, for a COS and an on-axis object, the spherical ab-
erration present at the on-axis image point is also present
at a neighboring point.

ii. Aperture derivatives of the aberration function

A~X8! 5 A e~X8! 1 A d~X8!. (34)

Ax(X8) is the derivative of W with respect to X8 and
changes the parity, whereas Ay(X8) is the derivative of W
with respect to Y8 and does not [see Eqs. (32) and (30)], so
Fig. 4. OSC: (a) Real and hypothetical rays at the exit that subtend an angle g8; (b) unit ray vectors (sx8
1 , sy8

1 , sz8
1) and

(sx8
2 , sy8

2 , sz8
2); (c) g81 ' 2g82 (coma at a neighboring point); (d) g81 ' g82 (spherical aberration, astigmatism, and field curvature).
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Ax,e~X8! 5 2S ]W
]X8D e

5 2
]Wd

]X8
,

Ax,d~X8! 5 2S ]W
]X8D d

5 2
]We

]X8
,

Ay,e~X8! 5 2S ]W
]Y8D e

5 2
]We

]Y8
,

Ay,d~X8! 5 2S ]W
]Y8D d

5 2
]Wd

]Y8
. (35)

According to Eqs. (35), for an even aberration function at
Qj we can have Ax,d(X8) and Ay,e(X8) different from zero,
and then [see Eq. (31)] both even and odd aberration func-
tions are introduced at Q̃8 (similarly for an odd aberra-
tion). For example, for the well-known case of a COS and
an on-axis object, if for the on-axis object point there is
spherical aberration, then this aberration generates coma
at a neighboring field point.

iii. Offense against the sine condition

V~X8! 5 Ve~X8! 1 Vd~X8!. (36)

For a better understanding of the OSC we consider two
rays from Qj in the symmetry plane: the real one and
the hypothetical one with (shx8 , shy8 , shz8 ) satisfying the SC
[see Fig. 4(a)]. Then Vy(X8) 5 2ldny8 5 0 and Vx(X8)
5 2ldnx8 5 n8(2sx8 1 shx8 ), and we have

Vx,e~X8! 5
1
2 @Vx~X8! 1 Vx~2X8!#,

Vx,d~X8! 5
1
2 @Vx~X8! 2 Vx~2X8!#. (37)

We refer to g8 as the angle from the ray vector (sx8 , sy8 , sz8)
to (shx8 , shy8 , shz8 ) and choose the mathematical sign con-
vention that angles count positive when they are counter-
clockwise. For a small OSC, g8 ' sin bh8 2 sin b8 (in this
case sin b8 5 sx8), and we can write Vx(X8) ' n8g8. For
rays with exit reference sphere coordinates X8 . 0 and
2X8 , 0, the unit ray vectors at the exit are termed
(sx8

1 , sy8
1 , sz8

1) and (sx8
2 , sy8

2 , sz8
2), respectively [see Fig.

4(b)]. If X8 . 0 we have

Vx~X8! 5 n8~shx81 2 sx8
1! ' n8g81,

Vx~2X8! 5 n8~shx82 2 sx8
2! ' n8g82. (38)

In Fig. 4(c) we have g81 ' 2g82, and according to Eqs.
(38), Vx(X8) 5 2Vx(2X8); that is, Vx,d(X8) Þ 0 and
Vx,e(X8) 5 0 [see Eqs. (37)], so that there is an odd OSC.
On the other hand, in Fig. 4(d) we have g81 ' g82, and
according to Eqs. (38), Vx(X8) 5 Vx(2X8); that is [see
Eqs. (37)], we have Vx,d(X8) 5 0 and Vx,e(X8) Þ 0, so
there is an even OSC.

The odd OSC [as in Fig. 4(c)] makes no contribution to
the even aberration function at Q̃8, while the even OSC
[as in Fig. 4(d)] makes no contribution to the odd aberra-
tion function at Q̃8 [see Eq. (31)]. For example, for the
well-known case of a COS and an axial object, we can
have only g81 ' 2g82; that is, Vx,d(X8) Þ 0 and
Vx,e(X8) 5 0, so that there is only an odd OSC, and it in-
troduces coma.
6. CONCLUSION
The generalized sine condition for a perturbated sym-
metrical optical system can be obtained by means of Fou-
rier optics, requiring the spatial frequencies present in
the image to be proportional to those at the object. The
unfulfillment of this condition is related to the field de-
rivatives of the wave-front-aberration function. The of-
fense against the generalized sine condition can be used
to analyze decentration tolerances when microscope ob-
jectives are designed and produced. This analysis is per-
formed assuming a perturbation in the system, tracing
rays and using the formulas of Section 5.

APPENDIX A: GENERAL DESCRIPTION OF
COORDINATE SYSTEMS
Following Hopkins3 (except that we interchange X with Y
to follow the notation of previous papers4), for our PSOS
we define as a starting point three types of coordinate sys-
tems: base, local, and canonical. These coordinates are
shown in Fig. 5 (for simplicity we draw the symmetry
plane alone). The surfaces of the object and the receiving
screens coincide with the surfaces S and S8, respectively,
of the reference COS. We consider aperture reference
planes at the entrance and the exit, which are termed P
and P8, respectively. For the coordinates we have the
following.

1. Base Coordinates
We consider an object point Oo in the symmetry plane
(our results do not depend on the localization of Oo , and

Oo may or may not coincide with the central point Õo),
and we choose Oo8 as its image obtained with the PSOS on
the surface S8. We choose axes OoEo and Eo8Oo8 perpen-
dicular to S and S8, respectively, and therefore Eo8Oo8 is
parallel to OoEo . (For a NCOS, Eo8Oo8 is usually not the
emergent ray corresponding to OoEo.) The points Eo and
Eo8 are the intersection of the axes OoEo and Eo8Oo8 with
the planes P and P8, respectively. The base coordinates
at the object are (jo , ho , zo) with origin at point Oo , zo
along OoEo and jo in the symmetry plane. The base co-
ordinates at the image are (jo8 , ho8 , zo8) with origin at Oo8 ,
zo8 along the prolongation of Eo8Oo8 and jo8 parallel to jo (ho8
and ho are perpendicular to the symmetry plane). The
base coordinates at the entrance reference sphere are
(Xo , Yo , Zo) with origin at Eo , Zo along OoEo and
(Xo , Yo) parallel to (jo , ho). The base coordinates at the
exit reference sphere are (Xo8 , Yo8 , Zo8) with origin at Eo8 .

2. Local Coordinates
We take into account an object point Qj that lies on the
axis jo (Qj can be different from Oo). We consider a base
ray QjE. For a general NCOS the base ray is the central
ray of the beam in any conveniently defined sense,3 and
for a COS the base ray is usually termed the principal ray
(to avoid confusion we reserve the term principal ray for a
COS and adopt the term base ray for a NCOS). The base
ray intersects the plane P at point E and emerges to cut
the plane P8 at point E8 and the image surface S8 at Qj8 ,
which is considered3 to be the geometrical image of Qj

(usually the base ray is not perpendicular to S and S8).
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Fig. 5. Coordinate systems for a PSOS: Oo , object point in the symmetry plane with image at Oo8 ; (jo , ho , zo) @(jo8 , ho8 , zo8)#, base
coordinates at the object (image) with origin at Oo (Oo8); (Xo , Yo , Zo) @(Xo8 , Yo8 , Zo8)#, base coordinates at the entrance (exit) reference
sphere with origin at Eo (Eo8); Qj , object point on the axis j0 ; (j, h, z) @(j8, h8, z8)#, local coordinates at the object (image) with origin at
O (O8) for the light beam from Qj ; (X, Y, Z) @(X8, Y8, Z8)#, local coordinates at the entrance (exit) reference sphere with origin at E (E8);
(XT , YS) @(XT8 , YS8 )#, canonical axes in the reference spheres; (jT , hS) @(jT8 , hS8 )#, canonical coordinates in the object (image).
The local coordinates at the object (j, h, z) are such that
the origin is point O (defined as the foot of the perpendicu-
lar from E to the plane S), the axis z is along OE, and the
axis j is parallel to j0 . Similarly, the local coordinates at
the image are (j8, h8, z8) with origin at point O8. The lo-
cal coordinates at the entrance reference sphere are
(X, Y, Z) with origin at E, with (X, Y) parallel to (j, h) and
the axis Z on the prolongation of OE. Similarly, the local
coordinates at the exit reference sphere are (X8, Y8, Z8)
with origin at E8.

3. Canonical Coordinates
According to Hopkins’s basic theorem,3 the canonical co-
ordinates at the entrance and exit reference spheres,
(XT , YS) and (XT8 , YS8 ), respectively, are obtained by ro-
tating the local coordinates (X, Y) and (X8, Y8) around the
Z and Z8 axes, respectively, so that all the rays entering
the optical system with YS 5 0 emerge with YS8 5 0 and
those entering with XT 5 0 emerge with XT8 5 0. For
our PSOS we choose local axes in such a way that the
plane Y 5 0 is the symmetry one, so (up to first order) the
rays that lie in the symmetry plane at the entrance also
lie in the symmetry plane at the exit, whereas the rays
entering the system in a plane perpendicular to the sym-
metry one must lie in a plane perpendicular to the sym-
metry one. Therefore the canonical axes (XT , YS) and
(XT8 , YS8 ) coincide, respectively, with the local axes (X, Y)
and (X8, Y8) defined above. The canonical coordinates in
the object and the image, (jT , hS) and (jT8 , hS8 ), must be
parallel3 to (XT , YS) and (XT8 , YS8 ), respectively, and
therefore for our PSOS they are identical to (j, h) and
(j8, h8), respectively.
APPENDIX B: COMPARISON WITH
HOPKINS FORMULAS
1. Relation between Coordinates and Spatial
Frequencies
Equations (18) and (19) can be compared with the Hop-

kins results.3 For an object point Q (which he names Q̃)
he considers direction cosines of the general and the base
rays (L, M, N) and (L̃, M̃, Ñ), respectively, defines l̃

5 L 2 L̃ and m̃ 5 M 2 M̃ [then l̃(n/l) 5 nx , m̃(n/l)
5 ny], and has l̃ 5 L 2 L̃ 5 2X/R and m̃ 5 M 2 M̃
5 2Y/R, which coincide with our Eq. (18). For the im-
age point Q8 he writes in his Eq. (3.15) the canonical co-
ordinates XT8 , l̃T8 , YS8 and m̃S8 in terms of (XT , YS).
From this equation, for a general optical system one can
obtain that both (nx8l)/n8 5 l̃T8 and (ny8l)/n8 5 m̃S8 are
proportional to both XT8 and YS8 . From our Eq. (19) we
have for our PSOS that ny8 is independent of XT8 because
all the rays in the fan on the plane YS8 5 0, which focus at
the tangential image point (here Dh8 5 0), have sy8 5 0
and for the base ray spy8 5 0, so that ny8 5 0. Moreover,
nx8 is independent of YS8 because the rays in the fan such
that XT8 5 0 focus in the sagittal image point (here Dj8
5 0), which is on the base ray, and have sx8 Þ 0 but (up
to first order) sx8 ' spx8 and nx8 5 0 for any YS8 . In Eq.
(19) we also have that nx8 (ny8) is proportional not only to
XT8 (YS8 ) but also to Dj8 (Dh8). Then our expressions co-
incide with those of Hopkins except for transverse aber-
rations.

2. Generalized Sine Condition
We obtain the SC by starting from Fourier optics,
whereas Hopkins uses geometrical optics. Using Eqs.
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(18), (19), and (9), our generalized SC [Eqs. (10)] can be
written as

~ j̃T8 2 jT8 !n8

R8
~XT8 2 Dj8! 5

~ j̃T 2 jT!n
R

XT ,

~ h̃S8 2 hS8 !n8

R8
~YS8 2 Dh8! 5

~ h̃S 2 hS!n
R

YS . (B1)

Hopkins defines normalized canonical coordinates at the
reference spheres and at the field (xT , yS), (xT8 , yS8 ) and
(GT , HS), (GT8 , HS8 ), respectively (here we interchange T
and S because we interchange X and Y to follow the no-
tation of our previous work5). Hopkins has

xT 5
XT

X5 T

, yS 5
YS

Y5 S

,

xT8 5
XT8

X5 T8
, yS8 5

YS8

Y5 S8
,

GT 5
~ j̃T 2 jT!nX5 T

R
, HS 5

~ h̃S 2 hS!nY5 S

R
,

GT8 5
~ j̃T8 2 jT8 !n8X5 T8

R8
, HS8 5

~ h̃S8 2 hS8 !n8Y5 S

R8
. (B2)

(X5 T and Y5 S are the coordinates at the entrance reference
sphere of the marginal rays corresponding to YS 5 0 and
XT 5 0, respectively, and the quantities X5 T8 5 ã11X5 T and
Y5 S8 5 ã31Y5 S are employed as normalization factors for the
exit reference sphere.) From Eqs. (40) and (41), our SC
written in terms of normalized canonical coordinates is

GT8 S xT8 2
Dj8

X5 T8
D 5 GTxT , HS8 S yS8 2

Dh8

Y5 S8
D 5 HTyS .

(B3)

This equation differs from the Hopkins SC, xT8 5 xT and
yS8 5 yS (with GT 5 GT8 and HS 5 HS8 ), only in terms that
are proportional to transverse aberrations.

3. Field Derivatives of the Wave-Front-Aberration
Function
The field derivatives of Eqs. (27) and (29) can also be writ-
ten in terms of the normalized canonical coordinates of
Eqs. (41) since dnx8 (or dny8) are related to XT8 and XT (or
YS8 and YS) by Eq. (21). We have ]W/](djT8 )
5 (n8X5 T8 /R8)(]W/]GT8 ) and ]W/](dhS8 ) 5 (n8Y5 S8 /R8)
3 (]W/]HS8 ); we define, as does Hopkins,3 reduced trans-
verse aberrations DG8 5 n8X5 T8 Dj8 /R8 and DH8
5 n8Y5 S8 Dh8 /R8 and consider3 mx 5 nX5 TR8/n8X5 T8 R and
my 5 nY5 SR8/n8Y5 S8 R [see Eqs. (9) and (41)] so that we ob-
tain

]W

]GT8
U

xT8 ,yS8 ,HS8

5 xT8 2 xT 2
R8spx8

n8 S DG8sx8

X5 T8
2

1
DH8sy8

X5 T8 Y5 S8
D ,
]W

]HS8
U

xT8 ,yS8 ,GT8

5 yS8 2 yS . (B4)

These equations differ only in the transverse-aberration
terms that are proportional to spx8 from Eq. (6.20) of Hop-
kins’s paper,3 which are ]W/]GT8 5 xT8 2 xT and
]W/]HS8 5 yS8 2 yS .
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