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ABSTRACT
Purpose. The paraxial propagation of astigmatic wavefronts through astigmatic optical systems can be described by the
augmented step-along method (ASAM). Its equivalence to the linear ray optics approach is considered in detail.
Methods. The ASAM is exploited to derive paraxial ray paths through a general coaxial astigmatic system.
Results. Starting from the information inherent in the ASAM all 2 � 2 submatrices rendering the general 4 � 4
transference of linear optics can be generated. This proves the complete equivalence of both approaches. Additionally,
we show that the symplectic relations are automatically obeyed in the ASAM.
Conclusions. The ASAM offers a complete alternative to describe the paraxial optics of astigmatic optical systems.
According to the ASAM, an optical system is fully characterized by the back vertex vergence and the angular
magnification matrix. Hence, a complete description of the paraxial optics of an eye should not only report the state of
refraction but the angular magnification matrix as well, although it is not yet very common. The magnification matrix
might be important in cases of anisometropia or the design of progressive addition lenses. Yet, a simple clinical procedure
to determine the angular magnification matrix is missing.
(Optom Vis Sci 2007;84:E72–E78)
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symplectic relations, angular magnification

Although exact numerical ray-tracing through nearly any
optical system is available today, paraxial optics is still key
to an intuitive understanding of optical systems. The tra-

ditional Gaussian theory deals with a two-dimensional setting.
Essentially, rays are considered in one plane only. This is appro-
priate for rotational symmetric systems. However, ophthalmic op-
tics requires more elaborate paraxial tools because the mentioned
symmetry of optical systems is lacking due to astigmatic elements.
In principle, this calls for a strict three-dimensional treatment.
Nevertheless, often a quite simple approach is chosen and a quite
strong assumption is introduced: all elements of the considered
systems are aligned in such a way that all principal axes of the
elements throughout the system have the same orientation. For
such systems each of the two meridians containing all the principal
axes are dealt with separately and the traditional Gaussian theory is
applied twice. This may be considered a poor approach to the
three-dimensional problem.

Daily practice in ophthalmic optics, however, dictates the un-
derstanding of more sophisticated situations, where the principal
axes of the elements under consideration may have arbitrary orien-
tations. A fortiori, even decentered or tilted elements have to be
considered. These problems call for an appropriate treatment and
accordingly the related theory of linear optics of astigmatic systems has
been extensively developed by Harris,1 Keating,2 Long,3 and Fick4 (in
reverse historical order). To accommodate the three-dimensional na-
ture of the optical setup, the scalar optical quantities known from
rotational symmetric systems change their character and become vec-
tors and matrices in the general case. These developments happened to
be based mainly on ray optics, perhaps, because one light ray repre-
sents a quite intuitive concept.

A wavefront represents an infinite set of rays all being normal to
the considered wavefront. Thus, if a wavefront is propagated, a
whole bundle of rays is propagated at the same time. In other
words: all rays belonging to one wavefront are not allowed to
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propagate freely but have to follow the collective rule governed by
the wavefront. This has been explained recently by the authors in
previous works5,6 showing that the related equations are quite
plain. In most cases, they are direct generalizations of their paraxial
relatives from the Gaussian theory.

According to this paraxial wavefront approach, a general astig-
matic system is characterized by three quantities: the incident and
emergent vergences, which are symmetric 2 � 2 matrices, and by
the angular magnification, which might be an asymmetric 2 � 2
matrix in the general case.

Given an on-axis incident wavefront with a vergence Lin, the
on-axis emergent wavefront is characterized by its vergence Lout.
All incident off-axis wavefronts with the same vergence Lin leave
the system with the vergence Lout as well. However, the directions
of the emergent wavefronts are connected to the ones of the inci-
dent wavefronts by the angular magnification matrix N. In other
words, all relevant information about the optical system under
consideration is available from these three entities.

In the well-established linear optics approach, the optical system
is characterized by the ray transference matrix. In this article, the
explicit relation between both approaches, the ray and the wave-
front picture, is developed to demonstrate their equivalence.

Thereby, the following assumptions valid for both models are
applied throughout the whole article. First, our discussion is re-
stricted to coaxial systems. Decentrations and tilts are not consid-
ered in detail. They may be included easily, as can be seen from the
results. Second, we do not consider the topic of monochromatic
aberrations, which by definition are outside the paraxial approach.
As well, we leave the topic of chromatic aberrations aside.

We begin with a very brief account of the linear optics approach,
that is the paraxial ray picture. This is followed by a short recall of
the wavefront approach as described in the ASAM. However, the
reader is referred to the literature5,6 for a deeper understanding.
We explore the relation of both approaches showing that the
ASAM renders all relevant data appearing in the ray-based ap-
proach. A discussion of the practical impact while characterizing
astigmatic systems ends this article.

Paraxial Ray Optics

We consider a paraxial ray in a given plane orthogonal to the
optical axis. This is the z-axis, defined by the centers of curvature of
all interfaces. At incidence onto a system the ray has transverse
position r1 � (x1, y1)

Tand slope or direction a1 � (a1,x, a1,y)
T. Both

position and direction are relative to the optical axis. At emer-
gence, the ray has position rK and direction aK, where a system
with K interfaces is considered. Instead of direction we work
with reduced or optical direction, that is, direction multiplied
by the index of refraction n of the surrounding medium, or
� � na. In nonparaxial optics these numbers are usually called
optical direction cosines. That is why we prefer the term optical
instead of reduced.

The state of the ray is represented by the ray vector, a vector with
position and optical direction as components. In particular, the
incident ray vector is

�1 � � r1

�1
� (1)

and the emergent ray vector is

�K � � rK

�K
� (2)

The ray transference of an optical system is a 4 � 4 matrix (or linear
operator) that converts the incident ray vector to the emergent ray
vector according to

�K � S�1 (3)

The ray transference fully characterizes the paraxial optical nature
of the system and may be divided up according to

S � �A B
C D� (4)

Vectors are denoted by small boldface letters and matrices by cap-
ital boldfaced ones. The fundamental 2 � 2 matrices A, B, C, and
D are not independent entries but obey the following so-called
sympletic relations

ATC � CTA � 0

BTD � DTB � 0

ATD � CTB � I (5)

where the 2 � 2 identity and null matrices are denoted as 0 and I,
respectively, and AT is the matrix transpose of A.

The ray transference can be calculated by the repeated multipli-
cation of the 4 � 4 transfer and refraction matrices which describe
the free propagation and the refraction of a ray at an interface. A
reflecting interface may be considered as a special case of refraction.
By the process of refraction and transfer, the optical construction
parameters like surface powers and distances between interfaces
enter the calculation.

Applying the ray transference of the system, we arrive at a pair of
vector equations relating the output and input quantities

rK � Ar1 � B�1 (6)

�K � Cr1 � D�1 (7)

In the output reference plane in image space, the position of a ray
and its direction are known once the entrance data of the ray in the
input plane in object space and the ray transference are given.
These relations completely determine all paraxial features of the
considered optical system for a given pair of reference planes.

Paraxial Optics of Wavefronts

In a given coordinate system, a wavefront w is described in
paraxial approximation by the equation

w(r) �
1

2
rTLr � rTp (8)

where again rT � (x, y) denotes the transpose of the position vec-
tor r. The tilt p of the wavefront at the optical axis is given by the
normal to the wavefront at r � 0 multiplied by the refractive index
of the local medium. Be aware that the tilt p of a wavefront at the
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z-axis must not be confused with the optical direction � of an
arbitrary ray. The vergence L of the wavefront is described by

L � � S � C sin2� �C cos�sin�
�C cos�sin� S � C cos2� � � �L11 L12

L12 L22
� (9)

where S � nc1, C � n�c2 � c1), represent a combination of the
principal curvatures and � the angle of the orientation of c1.

We consider a system of k � 1, . . ., K interfaces, separated by
gaps with the reduced thicknesses tk. An incoming vergence is
traced through that system by repeated application of the equa-
tions for refraction and transfer given by5

Lk
� � Lk � Fk (10)

Lk�1 �
1

�k
Lk

� �
tk

�k
(detLk

�)I �
Lk

�

I � tkLk
� (11)

where k is the surface number, Fk the dioptric power matrix of that
surface, and the diagonal identity matrix is denoted by I. As usual
vergences after a surface are distinguished by a prime, the quantity
� is calculated by

� � 1 � t�L11
� � L22

� 	 � t2�(L11
� L22

� � (L12
� )2	 (12)

where the index k for all quantities has been dropped.
Finally, the angular magnification N is determined by the

equation

N � ([I � t1L1
� ] � . . . � [I � tK�1LK�1

� ])�1 (13)

This angular magnification governs the relation between the wave-
front tilts in object and image space:

pK � Np1 (14)

It might be worth mentioning that the tilt vector does not change
across a surface but across a gap only.

Rays and Wavefronts

In the revision of this article we became aware that the connec-
tion between rays and wavefronts and specially between a tilt and a
decentration of a wavefront, have already been discussed by De-
schamps7 and Bastiaans.8

Since rays are normal to a wavefront, the local normal vector to
a wavefront describes the direction or slope of a ray. This can be
calculated from the local gradient. In paraxial approximation, we
determine the optical direction at the position r by the equation

�(r) � �
w(r) � ���w/�x
�w/�y� (15)

Applying the paraxial definition of a wavefront, equation 8, yields
the relation

�(r) � �Lr � p (16)

where p represents the tilt of the wavefront for r � 0.
A ray having position r and optical direction � can be trans-

ferred to the next interface, separated by the reduced thickness t.

The position vector at the next interface (denoted by �1) is given
by the equation

r�1 � t� � r (17)

or inserting equation 16

r�1 � (I � tL)r � tp (18)

For a more compact notation, we introduce the transfer matrix for
the space between interface k and k � 1, denoted by

Tk � I � tkLk
� (19)

This leads us to

rk�1 � Tkrk � tkpk (20)

To our knowledge, the matrix form of this equation has been used
for the first time by Fick4 and we propose to refer to equation 20 as
the Fick equation of ray transfer. An example for the application of
this equation and related marginal rays, the properties of Sturm’s
conoid, is presented in the appendix (available online at ww-
w.optvissci.com).

The transfer matrix is closely related to the angular magnifica-
tion matrix of equation 13 which may be rewritten as a product of
these transfer matrices

N � (T1T2 . . . TK�1)
�1 (21)

Ray Transference and ASAM

We now study in some detail the propagation of rays through an
astigmatic optical system applying the ASAM. The repeated appli-
cation of equation 20 to a given ray leads to a recursive system of
equations describing the ray coordinates throughout the system.
To illustrate the development of the final formula, we explicitly
write down the first three equations up to and including the fourth
interface

r2 � T1r1 � t1p1 (22)

r3 � T2T1r1 � t1T2p1 � t2p2 (23)

r4 � T3T2T1r1 � t1T3T2p1 � t2T3p2 � t3p3 (24)

Generally, for a system of K interfaces, we arrive at the following
expression for the ray position at the last surface

rK � (TK�1 . . . T2T1)r1 � �
l�1

K�1

tl (TK�1 . . . Tl�1)pl (25)

where TK�1 . . . Tl�1 � I, when l � K � 1.
The appearing products of transfer matrices for the subsystems

may be handled easier by introducing the shorthand notation

T̃ (l ) � �TK�1 . . .Tl for l � K � 1
I for l � K (26)

If the complete system is considered, we simply use

T � T̃ (1) (27)
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The tilt vectors pl of the wavefronts at each surface in equation 25
can be related to the entrance tilt vector p1 by applying equation 14
for the subsystem with interfaces from 1 to l

p l � (Tl�1
�1 . . . T1

�1)p1 l � 1 (28)

We now rewrite equation 25 as

rK � Tr1 � Wp1 (29)

where we have introduced the abbreviation

W � �
l � 1

K�1

tlW̃ (l ) (30)

with

W̃ (l ) � (TK�1 . . . Tl�1Tl)(Tl
�1Tl�1

�1 . . . T1
�1) (31)

The redundancy of the factors TlTl
�1� I is introduced for simplic-

ity in forthcoming usage. Note that W̃(1 ) � I.
In the next step, we relate the ASAM results of equations 14 and

29 to the linear optics approach, described by equations 6 and 7.
To this end, we exploit equation 16 which gives the relation be-
tween the ray angle, the vergence of the wavefront, and the wave-
front tilt. First, we calculate the local direction of a ray in image
space at position rK at the last surface K

�K � �LK
� rK � pK (32)

Now the ray quantities of surface K have to be related to the ray
quantities of surface 1 by equation 14 and 29 leading to

�K � �LK
� (Tr1 � Wp1) � Np1 (33)

In equations 29 and 33, the tilt p1 at surface 1 may be expressed via
equation 16 by the relation

p1 � �1 � L1r1 (34)

After collection of terms, the substitution of equation 34 into
equation 33 and 29 leads us to

�K � [�LK
� (T � WL1) � NL1]r1 � [N � LK

� W]�1

(35)

and

rK � (T � WL1)r1 � W�1 (36)

Comparing these results to equations 6 and 7, we can determine
the entries of the ray transference by the following relations

A � T � WL1 (37)

B � W (38)

C � �LK
� A � NL1 (39)

D � N � LK
� B (40)

We summarize the result as follows: all vergences throughout
the system and especially the back vertex vergence LK

� have to be
calculated. An arbitrary incident wavefront vergence L1 can be
used to this end. Then all transfer matrices Tl including their prod-

uct T can be determined. This knowledge, including the inverse
matricesTl

�1, allows for the calculation of the remaining quantities
N and W. Hence, for an arbitrary incident ray the coordinates and
the direction of the related emergent ray can be determined by the
ASAM without making reference to any other information, but the
vergences provided by the step-along method applied to an on-axis
vergence in object space.

For a special choice of the incident wavefront, namely
L1 � 0, the equations 37 and 39 render a simpler form, because
they reduce to A � T and C � �LK

� A.
This concludes the demonstration of the equivalence of both

approaches: the ray transference and the ASAM. As an additional
check, we will show in the appendix that the symplectic relations
are automatically fulfilled in the ASAM.

Since the involved steps in the derivation of the above results might
be considered lengthy, we repeat the main argument restricted to a
simple example of a thick lens.

Example: Thick Lens

We consider the relationship between the ray transference and
the ASAM in more detail for a thick lens. The lens is made up of
two surfaces with surface powers F1, F2 and a reduced distance t.
The reference planes for the ray transference are chosen to be
identical with the two surfaces. The ray transference is calculated
according to the product

S � � I 0
�F2 I �� I tI

0 I �� I 0
�F1 I� (41)

which becomes

S � � I � tF1 tI
�(F1 � F2 � tF2F1) I � tF2

� (42)

According to the ASAM, applying L1 � 0 for simplicity, we cal-
culate the vergences

L1
� � F1 (43)

L2 �
F1

I � t1F1
� F1T1

�1 (44)

L2
� � L2 � F2 � F1T1

�1 � F2 (45)

From these equations, we calculate the entries of the ray transference ac-
cording to the equations 37 through 40 yielding the following results

A � T1 � I � t1F1 (46)

B � t1W(1) � t1I (47)

C � �L2
� T1 � �(F1T1

�1 � F2)T1 (48)

� � �F1 � F2T1) (49)

� � �F1 � F2�tF2F1) (50)

All three entries are identical to those of the ray transference S. We
now go for the last missing entry

D � N � L2
� W (51)
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� T1
�1 � t1L2

� I (52)

� �I � t1L2
� T1)T1

�1 (53)

� I � tF2 (54)

In the last step, equation 49 for L2
� T has been exploited. In con-

clusion, all entries of the ray transference have been reproduced
from the ASAM information. The whole calculation may be re-
peated with L1  0. Besides some more intermediate steps, the
results remain the same, as can be expected.

DISCUSSION

We have shown that the fundamental paraxial properties of a
coaxial astigmatic system can be described by two equivalent ways.
One option is given by the 4 � 4 ray transference, mapping ray
positions and directions in an entrance and an exit plane of that
optical system. The alternative is offered by the wavefront ap-
proach describing the propagation of vergences, given by 2 � 2
matrices, throughout the system.

In both approaches, the dioptric power matrix is applied to
describe the action of an interface. The transfer is a common pro-
cedure as well, albeit once applied to a single ray and once applied
to a wavefront. From these two elementary operations, shortly
termed refraction and transfer, the properties of an astigmatic op-
tical system are generated. The main difference between the two
approaches lies in the way those properties are described.

The linear ray optics approach offers the four 2 � 2 A-, B-, C-,
D-submatrices which build the ray transference. First, these ma-
trices are not completely independent because of the symplectic
relations. These equations introduce the coupling between rays
which belong to one wavefront and must not be considered sepa-
rately. While switching to the wavefront picture these constraints
become obsolete. Second, the properties in which optometrists are
interested have to be derived from the submatrices. These include
the back vertex vergence and the magnification. They can be gen-
erated quite easily but nevertheless are derived quantities.

According to the ASAM, the fundamental paraxial properties of
an astigmatic optical system are given by three quantities: the ver-
gence of the entering wavefront, the back vertex matrix, and the
angular magnification matrix. Keeping the object distance fixed,
we need to consider only two quantities. First, we discuss the back
vertex vergence which is given as a symmetric matrix. Therefore,
choosing a proper rotation of the coordinate system this matrix
becomes diagonal. In this frame of reference, we may apply the
notions of traditional Gaussian theory to each of the principal
meridians in image space. Thus, traditional terms like sphere,
cylinder, and axis evolved to characterize the emerging on-axis
wavefront but obviously not the complete system. This on-axis
approach, restricted to the imaging of one field point only, may be
considered sufficient as long as it is restricted to the on-axis match-
ing of wavefronts. The procedure of on-axis matching forms the
basis for the prescription of optical correction like spectacle or
contact lenses: the wavefront that emerges from the lens has to be
of the same form as the incident wavefront which enters the eye
and generates a point-like image. Since these prescriptions play an

important role in optometric practice, we can understand why the
simple Gaussian theory outlived its limitations in so many cases.

Second, we have to consider the angular magnification matrix.
This quantity describes how the object field is imaged to image
space or in a simpler way: how the image is related to the object.
The angular magnification matrix might in general deviate from
what is termed magnification elsewhere, e.g., for near objects. A
thorough discussion is given by Harris.9,10

Independent of the question whether the ASAM or the linear
ray optics approach is used, it should be clear that the traditional
two-dimensional Gaussian theory contributes nothing in this re-
gion if an astigmatic system is under consideration.

Since the angular magnification is given as an asymmetric ma-
trix in the general case, the impact of an astigmatic system on the
imagery can be described by the vocabulary of affine geometry.
The angular magnification matrix represents an affine transforma-
tion, which maps lines to lines and parallel lines to parallel lines.
However, circles, for example, might be imaged as rotated ellipses
and vice versa. In general, the affine group includes a translation as
well. Therefore noncoaxial optical systems with decentered or
tilted elements are included as well, since the result of decentering
or tilting is merely a translation of the optical direction in image
space. As a side issue, prismatic corrections might be mentioned as
well, which contribute to the translation of optical direction in
image space. The paraxial off-axis optics of a general astigmatic
system is therefore completely characterized by an affine transfor-
mation determined by the angular magnification and a translation.
We do not step into the questions of singular angular magnifica-
tion matrices here, because they are not of practical concern in the
field of optometry.

From the perspective of the ASAM, a normal prescription, describ-
ing the state of refraction, is giving only half the information necessary
to characterize an astigmatic optical system in the paraxial region.
Only the information on the back vertex vergence of an optical cor-
rection is given. Missing is any information on magnification. In ad-
dition, there exist clinical problems with the correction of cylinders
even in the monocular case, and binocular corrections including eyes
with strong astigmatism might be quite difficult. One might speculate
whether the change of image forms and sizes are responsible for the
difficulty of accepting certain corrections. The understanding of the
related magnification matrix is mandatory for solving these problems.
However, yet there is no simple way to determine the magnification of
astigmatic eyes experimentally. Nevertheless, it might be worth some
effort to go in this direction.

Much effort has been spent to characterize the on-axis properties
of emerging wavefronts, leaving the eye beyond the paraxial ap-
proximation. Nowadays higher order aberrations of the wavefront
are considered and measured, e.g., by Hartmann-Shack-sensors, as
well. The results render a better understanding of the point spread
function related to the aberrations. These results are beyond the
scope of paraxial calculations. However, this detailed knowledge is
restricted to only one point concerning the object field of the
optical system. Frequently, the effect on the imagery of extended
objects, like letter charts, is visualized by a convolution of the
object with the point spread function. Obviously, blurred letters
are the results and the amount of blurring depends on the amount
of aberrations. This procedure implicitly rests on two assumptions.
First, the aberrations do not change drastically with the field posi-
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tion and second the magnification of the optical systems; besides, a
simple scaling does not change the form of the letter. The last
assumption however is not true if astigmatic systems are under
consideration. Therefore, the shape of the displayed letters is at
best unknown. At least paraxial information on the magnification
should be applied to determine the shape of the imaged letter and
in a second step the effect of aberrations can be included. Again,
the information on off-axis behavior of astigmatic systems is often
not included yet.
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APPENDIX
Symplectic Relations in the ASAM

The symplectic relations, equations 5, are related to the choice
of rays as the basis to describe an optical system. The symplectic
relations then represent the constraints according to the fact that
rays do not behave completely independent of each other, once
they are connected to the same wavefront. If, instead of rays, wave-
fronts are considered, these constraints are obeyed automatically.
This shows that the introduced quantities in the ASAM are a good
choice to characterize the optics of paraxial astigmatic systems.

One might compare the case of symplectic relations to the de-
scription of a pendulum in cartesian coordinates. This choice is
feasible, but since the length of the pendulum is fixed, the two
cartesian coordinates are coupled to each other, because an addi-
tional constraint has to be obeyed. If we switch to polar coordinates
the constraint is related to one coordinate only, the radius, while
the other coordinate, the angle, is describing the motion of the
pendulum independently.

In the following we will show that all symplectic relations, equa-
tions 5, are inherent in the ASAM. We will make frequent use of
the quantities defined in equations 37 through 40, albeit in the
simpler form rendered by the choice L1 � 0. It might be worth
recalling that the matrix transpose of a product of matrices reverses
the order of the matrices, for example �AC	T � CTAT. We start
with the first relation

ATC � CTA � 0

yielding

T̃T (�LK
� T̃) � (�LK

� T̃)TT̃ � 0

or

T̃T (LK
� � (LK

� )T)T̃ � 0

Since the vergence of the emerging wavefront LK
� is always sym-

metric, we have LK
� � (LK

� )T � 0. Thus the first relation holds.
The second relation

BTD � DTB � 0

leads us to

WT(Ñ � LK
� W) � (N � LK�W)T W � 0

Again we use the symmetry property of the vergence matrix and
get

WTN � NTW � 0

After right hand multiplication with �Ñ�1 this equation can be
re-written as

WT � NTWN�1 (55)

By definition, see equations 30 and 31, the quantity W is given
as a sum. We will show that for each term in this sum the following
relation holds

�W(l ))T � NTW(l )N�1 (56)

If this relation is respected from each term in the sum it follows
that the sum as whole will respect equation 55. The left hand side
of equation 56 is given by

�W(l ))T � (T1
�1. . .Tl�1

�1 ) (Tl�1. . .TK�1)

The right hand side of the considered relation may be evaluated
as follows

NTWN�1 � (T1
�1. . .TK�1

�1 ) (TK�1. . .Tl�1) (T1. . .Tl�1)�1 (T1. . .TK�1)

� (T1
�1. . .Tl

�1) (T1. . .Tl�1)�1 (T1. . .TK�1)

� (T1
�1. . .Tl�1

�1 ) (Tl�1. . .TK�1)

This result equals the one of the left hand side. Thus the relation
56 holds for each contribution of the sum and hence for the whole
sum. This completes the proof of the second relation.

The third relation

ATD � CTB � I

provides the equation

TT (N � LK
� W) � (�LK

� T)TW � I

With the help of LK
� � (LK

� )T we arrive at

TTN � I

or after application of a left multiplication by �TT)�1 we get

N � (TT)�1

By inspection of the definitions of both quantities, equations 13
and 26, we can see the validity of this equation.

In conclusion all three symplectic relations are respected auto-
matically within the ASAM approach. They impose no additional
condition on the basic quantities involved in the ASAM.

Sturm’s Conoid Revised

As an example of how ray intercepts can be calculated from the
ASAM and the Fick equation of ray transfer, equation 20, we
consider Sturm’s conoid. At incidence we assume a plane wave,
with vergence L � 0, which might be tilted and the related optical
direction is given by p. We assume a thin lens in air characterized
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by a dioptric power matrix F, leading to an emergent vergence
matrix of L� � F. If the lens rim is hit by a ray at position r0 the
related ray intercept with a plane at distance t � z is given by

r(z) � (I � zL�)r0 � zp

For illustrating purposes we choose the coordinate system in a
way that the emerging vergence matrix is diagonal with diagonal
elements L1

� and L2
� . Obviously, there are two focal lines at

z1 � 1/L1
� and z2 � 1/L2

� . Let us consider, for instance, the plane
through z1. The coordinates of the ray are then given by

x(z1) �
px

L1
�

y(z1) � �1 �
L2

�

L1
��y0 �

py

L1
�

Obviously, the x-coordinate does not depend on the rim coor-
dinates of the lens but on the tilt of the wavefront only, yielding an
off-set px/L1

� . The length of the focal line l is proportional to the
difference of the extreme y0-coordinates

l � �1 �
L2

�

L1
�� �y0,2 � y0,1)

Obviously, we have l � 0 for a spherical wave. If the lens has a
circular shape its diameter is given by 2R � (y0,2 � y0,1) leading to

l � 2�1 �
L2

�

L1
��R

The second focal line shows the same properties as the first one
and we omit a detailed discussion.

Next, we reconsider the circle of least confusion. As a first step
we may ask at which position we can expect a scaled replica of the
circular rim shape of the lens. A tilt of the incident wavefront does
not change the overall shape of the conoid but only leads to an
offset of coordinates. This has no influence on the following con-
siderations and we therefore suppress the offset for simplicity. A
replica of the circular lens shape is given if r(z) is proportional to r0.
This imposes the following condition on z

�1 � zL1
� � � �1 � zL2

� �

because the coordinates x0 and y0 have to be scaled by the same
multiplicative factor, where a minus sign might be allowed for as
well. The two possible solutions for the replica position zR are

zR � 0

zR
�1 �

L1
� � L2

�

2

The first solution gives the position of the lens itself. The second
one represents the well known result of the circle of least confusion,
where the inverse of zR is given by the arithmetic mean of the two
curvatures L1

� and L2
� . It might be worth mentioning that the circle

of least confusion is smaller than the lens itself if the relation L1
� �

L2
� � 0 holds. Otherwise the magnification of the replica, given by

��L1
� � L2

� 	/�L1
� � L2

� 	� is �1.
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