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Abstract

Purpose. This article proposes a simple model that describes the quantitative relationship between unaided
visual acuity and blur attributed to refractive errors.

Methods. The standard model for describing the relationship between visual acuity and blur, as published by
Raasch, is used as a starting point to develop a simpler model based on heuristic arguments. The basis of Raasch’s
data is augmented by published findings in the range of low-level refractive errors. Sphero-cylindrical refractive
errors are transformed into a single blur quantity b, also termed dioptric distance, which serves as an input in both
models. The possible influence of the cylinder axis and the pupil size is not included. Results. The quite simple
model for the unaided minimum angle of resolution, MARp/ 1 + b2, nicely matches available data and improves
the SE of the regression by a factor of 2 in comparison to Raasch’s model.

Conclusions. Both models considered in this article describe measurement data equally well. They differ in
terms of complexity and functional form. The simple model provides a valid description for low-level refractive
errors, where Raasch’s model fails. Actual uncertainties in experimental data on unaided visual acuity, especially
the frequent lack of information on pupil diameter, prevent meaningful numerical comparison and the refinement
of both models. However, theoretical arguments are provided in support of the simple model.

(Optom Vis Sci 2015;92: 121-125)
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Visual acuity is a frequently used indicator of spatial vision
that is applied both in clinical settings and for legal mat-
ters like driver’s licenses. The impact of refractive errors
on visual acuity has been of interest for a long time. Here,
we discuss standard, daylight, unaided visual acuity for
monocular, central vision. Because of the many factors in-
fluencing the relationship between visual acuity and refrac-
tive errors, it is quite a challenge to provide a quantitative
description of this relationship. It mainly depends on the
type and quantity of the refractive error in the uncorrected
eye, for example, spherical and cylindrical refractive errors
and aberrations of higher order, whereas pupil size plays
an important role in all cases.[1] We will confine ourselves
to the impact of ordinary refractive errors, sphere, and
astigmatism and neglect higher-order aberrations. The
effect of the cylinder axis on visual acuity will, for the
most part, be neglected. Furthermore, measurement data
on uncorrected visual acuities often suffer from incomplete
testing protocols, missing data on pupil size, illumination
levels, target types, and so on. An overview of all these
topics can be found in the lucid review article by Smith[2]
and the textbook by Bennett and Rabbetts.[3] Neverthe-
less, a very simple equation to describe unaided visual acu-

ity as a function of the refractive error will be presented
in this article. Visual acuity is measured in different ways.
One possible procedure is the free Freiburg acuity test us-
ing randomized optotypes in the form of Landolt rings.[4]
Although many parameters are involved in the relation-
ship between visual acuity and refractive error, Raasch, in
a seminal paper,[5] was able to demonstrate two impor-
tant points. First, there is a useful fit to empirical data
and, second, a single combination of sphero-cylindrical re-
fraction data into a single scalar blur quantity leads to a
working approach. Although Raasch’s equation generally
works well and has come to be recognized as a kind of
standard, it has one drawback: it does not allow for small
defocus or astigmatism values and becomes undefined for
an emmetropic eye with a refractive error of zero. Nev-
ertheless, Raasch’s equation is repeatedly used for small
blur values.[6, 7] The slight deficiency in Raasch’s formula
becomes important when the influence of refraction errors
must be estimated, say, for a merit function in the design
process for progressive addition lenses or contact lenses.
Additionally, tolerance specifications on oph- thalmic de-
vices often require at least an estimate of the impact on
visual acuity. Manufacturers of spectacle lenses often use
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in-house formulas for these purposes. Their equations,
however, are rarely published, an exception being the work
of Fauquier et al.[8] This article proposes a quite simple
equation that describes the influence of refractive errors
on uncorrected visual acuity. To this end, we introduce
Raasch’s approach and the question of how blur can be
quantified.

Raasch’s Approach

From a given sphero-cylindrical refractive error of a sub-
ject, where S and C denote sphere and cylinder respec-
tively, a scalar blur quantity, b, measured in diopters, can
be calculated: either with a Pythagorean addition of the
equivalent sphere and a cross cylinder of strength ±C/2

or, equivalently, as the mean of the quadratic curvatures
in the principal meridians. This leads to
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The square root of this quantity, which is always posi-
tive or zero, is called vector length in Raasch’s paper.
Dioptric distance is another term in use. Some readers
might be familiar with power vectors described in terms
of M,J0, and J45. Equation 1 could also be written as
b
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45. It should be noted that the blur

quantity does not change when recipe values are trans-
posed for a different cylinder sign. Nor does it depend
on the cylinder axis, assuming that all meridians produce
the same effects on visual acuity. The dependence of vi-
sual acuity on the cylinder axis may or may not be true;
the question is currently being examined. In the case of
a pure spherical power, C = 0, we simply have b = |S|.
In the case of hypermetropia and a working accommoda-
tion, the quantity b might be misleading, because partial
compensation by the accommodating eye lens is not au-
tomatically included. Patients with a cycloplegia or fully
developed presbyopia are allowed for, because no accom-
modation takes place. If, however, accommodation totally
compensates for a refractive error, we have b = 0. Optical
arguments can be derived from the use of power matrices
or power vectors in favor of the above form of the blur
quantity.[9, 10] When the visual acuity V is defined as the
inverse of the minimum angle of resolution (MAR) and
expressed as decimal acuity, Raasch’s equation establishes
a relationship between the logarithm of the MAR and the
logarithm of the blur quantity x = log(b):

� log V = log(MAR) = a0 + a1x+ a2x
2 (2)

The three coefficients of the polynomial in the variable x

are a0 = 0.48, a1 = 1.07 and a2 = 0.46. All logarithms
are used to the base 10. From Fig. 2 of Raasch’s paper
it appears that empirical data are abundant in the range
1.5 diopters (D) < b < 9D, whereas the 0.5 < b < 1.5

range is sparsely populated. Nearly no data seem to be
used in the range b < 0.4 D. Because of the logarithmic
form of the regression variable, x = log(b), the value of

b must be bounded from below, say b > 0.1 D, to pre-
vent an ill-defined situation. Because Raasch used little
or no data for small values of b in that regression, this
restriction does not seem to be essential. In conclusion,
Raasch’s approach explains 92% of the variance in acuity
scores underlying his regression. A certain degree of cau-
tion is required in interpreting this result, be-cause of the
large range of the underlying data.[11] Nevertheless, this
regression model will be the starting point and reference
for a simple model, which will be introduced at this stage.

A Simple Model

The approach proposed here uses the same blur quantity
as defined by Raasch. Therefore, no change is made to
the input form of sphero-cylindrical data. These data are
converted to the blur quantity by means of equation 1.
However, the functional form for describing visual acuity
will be altered in two ways: First, we will use a relative
unaided visual acuity, defined as the fraction

Vrel =
V

Vbc
(3)

where the unaided visual acuity V is divided by the visual
acuity related to the best correction, Vbc (see Refs. [8] and
[12] for similar approaches). Instead of the notion of a rel-
ative variable, we also use the term normalized variable.
The use of a blur quantity implicitly assumes knowledge of
the recipe values leading to the best correction. Whether
the visual acuity corresponding to the best correction is
available is another subject altogether. The use of a nor-
malized variable Vrel does not imply Vbc = 1, but Vrel = 1

for b = 0. The introduction of a relative variable might
reduce the influence of some experimental uncertainties,
because they affect both quantities: the numerator and
the denominator. Not only experimental uncertainties,
but also certain clinical conditions, for example, cataract,
retinal pathologies, age-related effects, and so on, would
influence both visual acuities in a similar fashion. How-
ever, because the model is based on data from otherwise
normal eyes, the model probably applies best to normal
eyes. Furthermore, relative variables do not have a unit:
in other words, they are dimensionless. Therefore, they
do not depend on the chosen unit of length, angle, Snellen
fraction, and so on. The inverse of Vrel is MARrel and the
only difference between the logarithms of the two quanti-
ties is a minus sign. Second, instead of the variable x given
above, we directly apply the square of the blur quantity b

in the following extremely simple functional form:

Vrel =
1

1 + b

2
or MARrel = 1 + b

2 (4)

As a simple example we consider a pure defocus (C = 0).
We get, say for the numerical values of b = S = {1; 2; 3}
DS, the relative visual acuities of Vrel = {0.5; 0.2; 0.1}. Be-
cause the logarithm of 0.5 is �0.3, we have a loss of 3 lines
for one diopter of spherical power. Relative visual acuity
in this case means a loss of 3 lines independent of the line,
which corresponds to the best correction.
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Equation 4 is the central proposal in this article and the
equation will now be tested against Raasch’s model and
against further empirical data as described in the next
section.

Empirical data and results

To augment Raasch’s data for small blur values, we in-
clude further data. We make use of data from Holladay et
al.[13] for spherical power values in the interval from 0.5
DS up to 5 DS. In a similar range, we extracted data from
Atchison et al.[1] The data provided by Villegas et al.[14]
lie in a smaller interval, b  2 D. The data from Ohlen-
dorf et al.[12] represent astigmatic blur, either induced
as a cylindrical error or as a cross-cylinder. They span
the range b  2.25 D. Fauquier et al.[8] supplied data for
50 sphero-cylindrical combinations and fall in the region
b < 1.5 D. Watanabe et al.[15] provide data for astigmatic
blur from 0.5 DC in steps of 0.50 DC up to 2.50 DC. Fi-
nally, the data of Kamiya et al.[16] describe the effect of
artificial pupil sizes from 1 to 5 mm on the unaided visual
acuity while astigmatism of 1, 2, and 3 DC is induced.
All data are pooled together and the 82 items are binned
in increasing order in intervals of 0.25 D according to the
blur quantity b. Only data for pupil diameters in the range
from 2 to 5 mm were included. For each bin, the mean
(logarithmic) and the SE are calculated. Fig. 1 shows
these data together with the simple model and Raasch’s
model. The error bars for measurement data represent the
SEs owing to all kind of variations, including pupil size as
the dominant factor.

Regarding typical experimental uncertainties, there is
clearly no difference between Raasch’s model and the sim-
ple model presented here for the range 5  b  10 D.
Therefore, for large values of the blur quantity, both ap-
proaches render the same results. Because of the math-
ematical difficulties in Raasch’s formula for b ! 0, it is
difficult to normalize his results, and for that reason, we
took the formula as it is. A constant offset of �0.13 log
units would be introduced if the value for b = 0.1 D were
applied as a reference for normalization. In the interval
1D < b < 5 D, results in Raasch’s model are consistently
lower than those of the simple model.

However, for small blur values, the functional forms are
quite different. Because the simple model assumes max-
imum relative visual acuity, the slope of the function de-
creases toward zero, until vanishing for the emmetropic
eye.

The simple model appears to be free of any parameters.
Actually, it contains at least one implicit parameter: the
coefficient of b2, which has a physical unit of square me-
ters and a numerical value of 1. We would like to know
whether a numerical value different from 1 would be con-
sistent with the data. To this end, we introduce an explicit
parameter a, which accounts for a possible deviation from
the numerical value of 1. Therefore, we choose the form
(1 + a) as the coefficient of b

2. Hence, the claim a = 0

defines the simple model and can be tested by fitting the

parameter a to the data. The fit could be done by a lin-
ear regression. Because of heteroscedastic residuals, we
instead applied a nonlinear regression for log Vrel, which
yields an estimate close to zero, a = 0.02. As a result, the
null hypothesis, a = 0, cannot be rejected with a p value
of 0.70. In other words, the parameter a is very unlikely a
meaningful addition to the simple model. The confidence
interval (2.5% to 97.5%) of the parameter a is given by
(�0.09 to 0.14) and the R

2 (adj.) value for the nonlin-
ear fit is 0.99. A more appropriate number than R

2 in the
case of a nonlinear regression is the SE of the regression. It
takes a value of 0.046 when the simple model is applied to
the data considered in the current article. Raasch’s model,
applied without any changes to the same data, renders a
value of 0.11. In this case, the simple model shows an
improvement by a factor of 2 for the SE of the regression.

This section may thus be summarized as follows: in view
of experimental uncertainties, an amazingly simple model
with a minimal number of parameters offers a sufficient
“primal sketch” for the relationship between unaided vi-
sual acuity and refractive error.

DISCUSSION

Although the best-corrected visual acuity is remarkably
stable over the range of natural daylight pupil diameters,
say 2 to 4 mm, the unaided visual acuity depends heavily
on pupil size in the case of blurred images. The explana-
tion for the former goes back to the Stiles-Crawford effect,
as given by Vohnsen.[17] The latter phenomenon is well
known and can be demonstrated by a simple test. When
a pinhole is placed in front of an ametropic eye, visual
acuity can be increased drastically even for considerable
refractive errors if the cause of ametropia lies in the op-
tical pathway. With arguments from geometrical optics,
this fact can be explained by the reduction of the blur
circle area, which is proportional to the area of the pupil
- drastically reduced by a small pinhole. How- ever, the
maximal visual acuity achieved with a pinhole is bounded
by diffraction effects and clearly falls short of the visual
acuity rendered by the best correction with natural pupil
diameters.

When the eye suffers from an astigmatic refractive error,
the wavefront reaching the retina renders a blur ellipse in-
stead of a blur circle. The area of this blur ellipse might
be a proxy for the blurring effect, which reduces visual
acuity. Clearly, the area of a cross section in the Sturm
conoid degenerates to zero when the cross section contains
the tangential or sagittal focus. This means that the area
of the ellipse is useful only far from the regions of focus. In
these distant regions, where the sphere is large compared
with the cylinder, the area of the ellipse is proportional to
the product |S(S + C)|, where S and S + C are the prin-
cipal curvatures of the wavefront. The square of the blur
quantity can likewise be approximated by b

2 ⇡ |S(S+C)|.
The unaided visual acuity actually decreases at a rate of
Vrel / 1/b

2. Thus, asymptotically, the unaided visual acu-
ity is inversely proportional to the area of the blur ellipse.
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This asymptotic behavior naturally emerges from the sim-
ple model (equation 4). It is difficult to see how such a
behavior could be derived from equation 2, although it
implicitly describes the same effect. For small sphere and
cylinder values, or for large cylinder values, this simple
model breaks down, requiring replacement of the blur el-
lipse area with a more sophisticated quantity, as given by
the blur quantity b.
The argument that the increase in the area, rather than
the linear dimension, is responsible for decreasing visual
acuity is quite unusual. This approach might be supported
by the fact that the number of photons decreases in pro-
portion to the area over which they are spread, leading
to a lower signal-to-noise ratio. However, this argument
is quite speculative and calls for further discussion that is
beyond the scope of this article.
The best correction should maximize visual acuity. Up
until now, at least, there has been widespread agreement
on this point, although maximization of a different merit
quantity, like contrast at intermediate spatial frequen-
cies, could be a goal as well. Nevertheless, every maxi-
mum has the property that small variations in parameters
(like refractive error) have no effect - at least in a lin-
ear approximation. The variations manifest themselves
only in quadratic order. In other words, the tangent to
an extremal point is horizontal and the slope vanishes
at the maximum. The simple model shows this prop-
erty. For small values of b, we have: Vrel ⇡ 1 � b

2 and
log(Vrel) ⇡ �b

2. No linear term in b is present, as ex-
pected for an extremum. The relative visual acuity (or
its logarithm) decreases quadratically as it approaches its
best value. This might appear to be quite a gradual de-
cline. When depth of focus (' 0.25 D) is considered, there
is actually only a slow response to defocus. From the sim-
ple model, we have a drop-off of 3 lines (0.3 log units) at
a refractive error of 1 D, which contrasts with the rule of
thumb of “4 lines per diopter.” Again, in the absence of
sufficient information on pupil diameter, this difference is
not significant. Before us, Smith[2] suggested a similar ap-
proach to the behavior of low-level refractive errors. It is
worth mentioning that when expanded to quadratic order,
the formula proposed by Smith leads to the same numeri-
cal result when his proposal k = 0.8 and a pupil diameter
of 2.5 mm are used. Smith dismissed any functional form
of the type log V � log b, because it has no foundation in
optical theory.
The simple model presented here can be augmented by
introducing parameters like pupil size, axis orientation of
a cylinder, or linear dependence on b. However, exper-
imental data show substantial uncertainties, and results
from different authors are not compatible, because exper-
imental parameters are not known, not documented, or
not standardized. As long as these circumstances prevail,
the simplest approach, which does not contradict experi-
mental findings, should be appropriate. This article does
not argue that the simple model describes data better than
Raasch’s does; it merely states that owing to limited infor-
mation on pupil diameter or to experimental uncertainties,
the two models deliver similar results. This suggests that
a simpler model would have much to recommend it.
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FIGURE 1.

The logarithm of relative unaided visual acuity (negative of logMAR) is plotted against the blur variable b. Measure-
ment data in the range b  5 D have been pooled from different studies and binned into 0.25-D intervals. Only data
for pupil sizes between 2 and 5 mm are included. In each interval, the circle stands for the mean (logarithmic) and
the error bar represents the SE. The variance is mainly dominated by the pupil size. The model of Raasch (broken
line without marks) and the simple model (� log(1 + b

2
)) (solid line without marks) show an overall agreement with

experimental data. Both models share the same asymptotic behavior for large values of b. For b > 3 D, the difference
between the two models is less than 0.1 log units and therefore negligible. The SE of the regression is improved by a
factor of 2 for the simple model.
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