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NOTE

On the Numerical Solution of the Time-Dependent
Schrodinger Equation

The microscopic description of many-body systems like
atoms or nuclei is based on a many-body Hamiltonian. The
related wave functions are given by Slater determinants for
fermions. In the case of time dependent processes like atomic
or nuclear collisions, nuclear fission or fusion, however, the
situation is too complex due to the great number of degrees of
freedom. Therefore, in most cases, a collective coordinate is
introduced according to the essential physical properties of the
considered system. This procedure leads to a macroscopic
meodel with one degree of freedom, which is governed by an
effective one-body Schrédinger equation including a time-de-
pendent potential in the considered examples [1]. The well-
known coordinate representation reads
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A momentum dependent potential V, leading to an integro-
differential equation, is excluded here. In almost all practical
cases Eq. (1) has to be evaluated numerically. The standard
technique essentially consists of the following two steps: first
apply a suitable scheme for the space discretization and then
perform the time integration.

The algorithm presented here is only related to the second
step: The time integration in the case of an explicitly time
dependent potential V(r, £). Our proposed convenient modifica-
tion upgrades the standard method to a much more efficient
version while negligibly increasing the computing time.

Our experience is due to the description of ternary fission,
i.e., a fission process accompanied by the emission of an a-
particle, with results to be published elsewhere. However, the
presented algorithm might be of broader interest, not necessarily
restricted to this nuclear physics theme.

In this note we will discuss the application for the case of
a cylindrically symmetric, time-dependent potential, essentially
following Koonin’s procedure [2], and present a test using an
analytically solvable example.

As usual, in a cylindrically symmetric case, the angle depen-
dence on ¢ of the wave function is separated as

b= % Wp, z, 1) explipne), (2

and a grid is defined by
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pf = (.] = ]/2) Aps J = l; ) Npa (3)
= kAz, k=—N,,..,N,.
For simplification we introduce now
&x=Vp Yis. @
leading to the space-discretized equation
g0 =
ih o 8ix = (Hg)x = (g)jx + (hg)jus (5)

where the Hamiltonian H is split in a ‘‘vertical’’ (v) and a
“‘horizontal’’ (h) part,
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with the abbreviations
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Up to this point no changes are made in comparison to Koonin’s
algorithm. We solve Eq. (5) iteratively, with times 1, = n At,
using a Taylor expansion of g,(,) = gj’, up to and including
(Af)%, and obtain
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where all terms on the right-hand side are evaluated at time
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t,. The time derivative V;, = aV,,/or is included to ensure
consistency up to second-order contributions.

Inserting ¢ on the right-hand side is not an advisable method
to determine g”*", because of serious numerical instabilities.
Therefore, an “‘alternating direction implicit method’’ [3] is
used, leading to a modified version of Koonin’s algorithm
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where again all terms on the right-hand side are evaluated at

time ¢,. Our result may be verified by an expansion in terms

of At up to second order. There are no restrictions on the

commutation of [v, k]. By neglecting terms dependent on Vj,k,

our expression reduces to the one used by Koonin et al. in [2].
For numerical convenience we now define w™ by
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leading to
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In order to determine w™, and thereafter g"*", one has to
invert tridiagonal matrices only, which can be performed by a
suitable algorithm [4].
A central point for the efficiency of our modification is that
the determination of

(m) _ 17D
V(_:;‘) = Vj.r’c Vij
I

12
A (12)
up to order (Ar)” poses no appreciable effort. Anyway, the
values of V;; have to be calculated for all time steps in order
to determine v and A. It is deemed unsuitable to compensate
this by determining v and £ at an intermediate time step, ¢ +
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TABLE I

Results of the Numerical Test

Relative error of Relative error of

the real part the imaginary part
Nodes Standard Modified Standard Modified
=0 10% 0.4% 4% 0.2%
=1 10% 0.6% 4% 0.4%
=2 1% 0.3% 40% 5%
=3 20% 4% 1.5% 0.6%

Note. The relative error of the real and imaginary part of the wave function
is displayed for different numbers of nodes. The modification of the Koonin's
standard algorithm lead to an enhancement in the accuracy of up to an order
of magnitude.

At/2, because one has to calculate the potential at this additional
time step, as well. In many cases this produces appreciable
effort. For example, in our calculations concerning the ternary
fission it took approximately the same time to calculate V™ for
one value of n on the whole grid as to perform one iteration
step from g* to g"*V,

To test our algorithm, with regard to the modification due
to keeping terms dependent on V, we consider the following,
explicitly time-dependent potential,

V(r, 1) = %Mculr2 — 2hw't. (13)

At time ¢ = 0 this is the potential of the harmonic oscillator
with frequency w. For the initial wave function we choose an
eigenfunction of this harmonic oscillator

¢(r!t=0)=cl Hf(\/Ez) "ﬁ/ﬂ- €xXp (_'g"[Pz+Z2])a (14)

where B8 = Mw/f,1 € {0, 1,2, ..}, H =
and ¢, = constant of normalization.
The analytical solution is given by

Hermite polynomial,

¢(r, 1) = ¢(r, 1 = 0) exp(—iw[l + 3/2]t + ix’). (15)
The results are displayed in Table I for different radial quantum
numbers [ (different numbers of nodes of the wave function).
Both parts of the wave function—real and imaginary—are
considered separately. We use @ = 2, Ar = 1/60 with 60 time
steps and grid parameters N, = N, = 64 and Ap = Az = (.25.
The enhancement in accuracy becomes as large as an order of
magnitude. The norm of the wave function is (nearly) con-

served, since the algorithm—modified or not—is nearly uni-
tary [2].
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We note that the considerations for a one-dimensional time-
dependent potential are quite the same. One obtains

-1
d(x,t + Af) = (1 + EHAI 2 s V(AI)E)

(16)
(1 — EHA: —— V(Ar)z) d(x, 1) + O((Ar)?).

Again the calculation of V(x, f) poses nearly no effort. In
contrast to the ordinary method, where the V terms are neglected
[4], the above expression is accurate up to order (Ar)’. The
approximation (16) is unitary; it automatically maintains the
normalization of ¢. We note that no alternating direction
method is needed in the one-dimensional case.

We summarize. In the case of a time-dependent potential the
standard algorithm of Koonin can easily be modified to obtain
a greater accuracy. Therefore, terms depending on V have to
be included to get a consistent time expansion up to order (A?)>.
The related algorithm has been shown to be superior in the
presented numerical test.
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