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The possibility of extending the microscopic a-decay
theory to exotic decay modes is investigated. It is argued
that the strong Pauli distortions in the antisymmetrized
wave function of the open channel favour this possibility.
The microscopic description can be reduced to a one-
body picture; the structure information is then contained
in a spectroscopic factor. Existing microscopic calcula-
tions from a- up to *°O-decays justify a simple unified
bulk formula for the spectroscopic factor. In this way
a semiempirical formula for the decay constant is ob-
tained depending on 1 parameter only (for odd and even
nuclei, respectively). This formula describes all decay
modes in a unified way and yields an excellent reproduc-
tion of the known exotic decay rates. It is thus well-suited
for the unambiguous prediction of yet unmeasured decay
constants.

PACS: 23.60.+¢; 29.90.4+ w; 21.60.Gx

1. Introduction

1.1. Alpha decay

Experimentally one finds that a 1 MeV difference in the
a-energy E, changes the life time of an a-unstable nucleus
by about 4 orders of magnitude; this relation is described
by the Geiger-Nuttall law. One of the most prominent
successes of quantum mechanics was the explanation of
the a-decay and the Geiger-Nuttall law by Gamov [1]
and Condon and Gurney [2]. This explanation is given
in a one-body model: the parent nucleus is represented
by an a-particle moving in the average potential V(R,)
of the daughter nucleus. The a-particle can leave the
attractive interior region of V(R,) only by penetrating
through the Coulomb barrier. The penetration probabil-
ity and thus the related Gamov decay constant A; de-
pend sensitively on the released energy E,.

* Dedicated to Prof. Dr. H.J. Mang on the occasion of his 60th
birthday

In the energy regime of interest, the nuclei are well
described as many-body systems made up by nucleons.
The most successful and most widely applicable many-
body wave functions are those of the nuclear shell model
[3]. This shell model is also the basic starting point for
most of the more sophisticated microscopic descriptions
of nuclear structure. For the first time Mang [4] evalu-
ated the a-decay constant using microscopic shell model
wave functions. The calculation is performed within the
following space of many-body states

{¢A+a’ ejz“//(uE(]RaA) ¢a¢A)} (1)

where ¢, ., 4 and ¢, are the many-body wave func-
tions of the parent nucleus, the daughter nucleus and
the «-particle, respectively. The function ugz(R,,) de-
scribes the relative motion in the open channel, and &/
denotes the antisymmetrization operator.

Mang’s calculations [5] were able to describe the
relative decay rates successfully. The absolute decay
rates, however, fell short to the experimental ones by
a factor of the order 102 to 103. This problem was solved
[6] by noting the following effect: The antisymmetriza-
tion between ¢, and ¢4 leads to a normalization defect.
Therefore the amplitude u in (1) contains a normaliza-
tion part. This part has to be split off from uy in order
to obtain a wave function of relative motion which can
be determined by a one-body Schrodinger equation.
Consequently this normalization appears in the spectros-
copic factor. The decay constants obtained by proper
consideration of this effect are of the right order of mag-
nitude. Alternative attempts to solve the problem of ab-
solute decay rates by extensive configuration mixing are
discussed in [7].

1.2. Extension to exotic decays

The discovery of the '*C-decay by Rose and Jones [8]
in 1984 initiated an extensive search for other exotic
decays. Already measured are the emission of C, Ne,
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Mg and Si nuclei. A review of the experimental status
up to 1989 is given in [9, 10], for the latest results see
[11-13, 26]. Quantitative arguments for the emission of
fragments heavier than a-particles have been given for
the first time by Sandulescu et al. in 1980 [14].

We want to discuss the possibility of extending the
successful a-decay theory to these exotic decay modes.
In such an extended model the wave function ¢, in (1)
stands for the light fragment (for example *°0, a=16).
The physical basis is represented by the configuration
space (1) which contains the wave function of the quasi-
bound parent nucleus (mass number A+a, proton
number Z+z) and the antisymmetrized product state
for the open channel (fragments (4, Z) and (a, z)).

The main argument against an extension of (1) to
exotic decays is the following. The open channel in (1)
is made up by the undisturbed states ¢, and ¢, of the
two fragments (usually ground states). One might argue
that this is only justified for a sudden process. For dis-
cussing this argument we denote the typical time scale
for the motion of the small fragment by ¢, (for example
the orbiting time of an « inside the nucleus), and a typical
time scale of ¢, by t, (for example a time period of
a collective oscillation or deformation). The use of the
undisturbed wave functions ¢, and ¢, is then assumed
to be justified if ¢, <t,. Since the time scales are related
to the corresponding masses the condition might be met
for a-decay (because of a=4 < A) but, eventually, would
be violated for exotic decays. This argument against the
extension of (1) to exotic decays is, however, inconclusive
for the following reason: Due to the antisymmetrization
the open channel state in (1) contains strong Pauli distor-
tions and is actually far away from a sudden configura-
tion. This will be explained in more detail in the follow-
ing paragraphs.

In order to discuss the Pauli distortions explicitly
we consider an a-particle and a closed shell daughter
nucleus as an example. The internal structure of the a-
particle is described by an oscillator ground state ¢,.
For its motion we use a Gaussian wave packet u, cen-
tered at R in coordinate and at #K in momentum space:

uo(R,) ¢, =cexp(iKR,) exp(—y(R,—R)*) §,

= [1 exp(iKry/4) oyt~ R):=(15)*. @

3=l

The centre-of-mass coordinate of the a-particle is denot-
ed by R,, the nucleon coordinates by r;. The spin and
isospin part (S=0, T=0) is suppressed. For a suitable
value of y the wave function (2) can be written as a
product of four 1s-states ¢,(r) oc exp(—f(r—R)?) cen-
tered at R; due to the phase factor these 1s-states are
moving with the average momentum #K/4. Accordingly,
for a fragment with a nucleons the average nucleon mo-
mentum becomes /K/a. The dependence on R and K
is denoted by a prime in the shorthand notation 1s".

In a closed shell configuration ¢, the lowest single
particle states vy, v,, ..., v, are occupied. With (2) the
wave function u, ¢, ¢ 4, becomes a product of 4+ a single
particle states. The A4 states in ¢ 4 are mutually orthogo-

nal, but not orthogonal to those of the a-particle. In
a Slater determinant built of 4+ a nucleon states the
non-orthogonal parts cancel. Therefore the antisymme-
trization leads effectively to the following replacement:

P . ~ A
‘1S,> Pauli distortion |1Sl>=|15/>‘— Z IVj><Vj‘ ls,>
j=1

aw

= Z IVj><Vj|15’>' (3)

j=A+1

This means that the nucleons of the a-particle are effec-
tively restricted to the levels outside the closed shell (last
expression). The argument can be easily extended to 10
instead of an x-particle. For non-closed shells (for ¢,
or ¢,) some technical problems in performing the anti-
symmetrization arise but the basic physical effects are
the same.

Equation (3) displays the Pauli distortions induced
by the antisymmetrization. These distortions are quite
strong: Placing the a-particle at rest within the nuclear
surface of a lead nucleus every nucleon of the a-particle

A
finds its place to about 90% (z 1<y, 15/>|2:0,9> occu-
1

pied, which is equivalent to the percentage of the mo-
menta of 1s" which are below the Fermi momentum #kg.
This number implies that the resulting configuration is
far from being sudden.

The inclusion of an average momentum K in the
above formula allows an estimate of the momenta neces-
sary for a sudden configuration. The overlaps {v;|1s>
in (3) are small if the condition K/4> k; is fulfilled. For
a light fragment with a nucleons this means

K> aky=-sudden case: p=p,+p,. 4

If this condition is fullfilled the Pauli distortions are small
and the nucleon density p of the combined system is
Pa+pa4. Instead, for K <aky, only a moderate enhance-
ment of the nuclear density [15] occurs in the overlap
region (instead of a doubling).

The fragment ¢, is formed by the last a single particle
states in ¢ ,.,. Therefore its relevant momenta are of
the order ahky and the theory based on (1) does not
correspond to the sudden limit. Quantitatively we may
describe the strength of the Pauli distortions by the nor-
malization defect of |1s") in (3). For normalized states
|1s"> one obtains {1s'|1s">~0.1 for an z-particle at rest,
and about 0.2 to 0.3 for K4k, if R is in the region
of the nuclear surface. This discussion applies to z- and
exotic decays in the same way.

Summarizing, we state that the open channel descrip-
tion in (1) is far from being a sudden description. In
the antisymmetrized open channel state the nucleons of
¢, are automatically pushed above the Fermi level of
¢ 4. Thereby a configuration is obtained which in con-
trast to the sudden limit (p =p,+ p4) is "dynamically ac-
ceptable’. By this we mean that there is no density dou-
bling in the overlap region and that therefore additional



dynamical effects are not overwhelming. In principle,
dynamical effects could be taken into account by includ-
ing further (open or closed) channels in (1).

We conclude this subsection with the statement that
it is not unplausible to extent the a-decay theory to exot-
ic decays. We proceed accordingly and present a unified
model applicable to a-decay and to exotic decay modes.

2. Unified model
2.1. Reduction to the one-body level

On the one-body level (corresponding to [1, 2]) the decay
constant Ag is determined by the solution of the Schro-
dinger equation,

hz
(—ZA—FV(R)*E) prR)=0 = 4. (5)

Here u is the reduced mass of the A+ a-channel and
V(R) is a suitable potential for this channel. The one-
body decay constant A;=1I"/h is given by the width I
of the (very sharp) resonance of the scattering solution
of (5) at the appropriate energy E,. Alternatively one
may consider a time dependent Schrodinger equation
with the initial condition that the wave function is local-
ized in the interior. The probability of finding the particle
in the interior behaves then like exp(— ¢ ¢).

In the parent nucleus one finds the structure of the
open channel (the antisymmetrized (¢, plus ¢,)-struc-
ture) with a certain probability S. To the extent to which
this structure is preformed in the parent nucleus the one-
body model (5) applies. This means that the actual decay
constant A becomes

A=2¢gS. (6)

For a more elaborate treatment of the reduction to the
one-body level we refer to [4, 6]; this treatment uses
reduced amplitudes instead of their norm S. The inherent
errors due to unceitainties in the potential ¥ and the
structure of the involved nuclei are considerable (see
Sects. 2.2 and 2.3); this is in particular so for the exotic
decays. Therefore the simple formulation (6) is quite ap-
propriate.

The probability of finding the open channel structure
in the parent nucleus ¢ 4., equals the expectation value
of the projection operator P onto this structure:

S=Cba+al Pldasa- )

The structure of the open channel is defined by the con-
tinuous set of the basis states |[R)>:

<l'1, "':rA+alR>:d(5(R—Ra) ¢H¢A)' (8)

The daughter nucleus wave function ¢ ,(xy, ..., r,) de-
pends on A4 nucleon coordinates; this means that the
centre-of-mass motion is neither split off from the heavy
fragment nor from the parent nucleus. The light fragment
wave function ¢, depends on a—1 internal coordinates
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only. Due to the Pauli distortions the states |R) are
not normalized to (R —R’) but to

R|R)=(1-K)p p=0(R—R)—K (R, R). )
The projection operator P onto the space {|R)} is then

P=[dR[dR'|R) (TIE)R RI<R’|. (10)

The spectroscopic factor S defined in this way equals
the percentage to which the parent nucleus state lies
in the space spanned by (8); it is thus the probability
of finding the open channel structure preformed in the
parent nucleus.

2.2. Spectroscopic factor

We discuss the evaluation of the resulting spectroscopic
factor (7) and its dependence on the nucleon number
a.

The norm operator (1—-K)™ ! in (10) is needed for
the property P2 =P. This projection property is required
for defining a proper quantum mechanical probability
(7). Cluster spectroscopic factors found in the literature
before 1975 are those which result from the neglect of
the norm operator in (10); in contrast to S we call them
conventional spectroscopic factor S.,,,. The replacement
of Seony by S solves the problem of absolute values (as
discussed in the last paragraph of Sect. 1.1).

Microscopic calculations of S have been presented
for a-decay in [6, 17] and for **C-decay in [18]. Includ-
ing additional calculations up to 'O we display some
typical values:

1072 2'2Pg »o 4+ 2°8Pb

10~8 222Ra__)12C+210Pb
S 10-10 224Ra«>14C+21°Pb (11)

10711 226Th_)160+2101)b

The corresponding conventional spectroscopic factors
are smaller by factors of the order 300, 10°, 10® and
10'2, respectively. Nevertheless, S.,,, has been used for
exotic decays in [16].

The spectroscopic factor is related to the overlaps
of the single particle states of ¢, with the last a states
in ¢ 4 +,. In the simplified picture underlying (2) the light
fragment is represented by the single particle states
|12, ..., |#tay which are distorted to |i;> as in (3). The
effect of the operator (1—K)~! in (10) can be simulated
by the normalization of the states |fi;) yielding | norm»-
Therefore one expects the spectroscopic factor to behave
roughly like

S~ H [<.aj,norm|vA+j>|2' (12)
j=1

This expression shows (i) that many single particle states
contribute to -S, and (i)} that S will roughly scale with



124

the a-th power of the square of a single particle overlap.
The first point can be seen from the product (12) and
from the structure (3) of the Pauli distortions.

Since many single particle states contribute to S one
may expect that in general the resulting values reflect
bulk properties of the involved nuclei. At the same time
it means that uncertainties in the structure of the decay-
ing nucleus may imply relatively large errors in S: For
example, a change of the single particle overlaps by 10%
yields a factor 30 in § for *®O-decay. The uncertainties
of the microscopically calculated values are of one to
two orders of magnitude for the region ax16. Like S
itself, the uncertainties will also roughly scale with the
power a. Explicit microscopic calculations are therefore
of limited use for predicting heavier decay modes. What
they do show, however, is that a description based on
(1) yields the right magnitude for the absolute values.

Formula (12) indicates that, compared to a-spectros-
copic factors S,, the spectroscopic factor for heavier frag-
ments should scale like (S,)¥*. The comparison with our
microscopic calculations shows [20] that the scaling is
much better described by

Spue = (S~ 173 (bulk spectroscopic factor). (13)

This can be easily understood by noticing that the
centre-of-mass motion is (and should be) split off from
the shell model function of the light fragment. Conse-
quently the ¢, depends on a—1 internal coordinates
only; each coordinate yields one factor in the product
(12). This explains the scaling with (¢—1)/3 instead of
a/4.

The relatively large number of contributing single
particle functions, the inherent uncertainties and the cal-
culational effort of such a calculation suggest to use the
bulk spectroscopic factor (13) for practical purposes. This
will be done in the following. It should, however, be
kept in mind that the justification of (6) with (13) is based
on the microscopic starting point (1) and corresponding
explicit microscopic calculations [6, 17, 18].

2.3. One-body decay constant
The one-body decay constant Ag is determined by the

Schrédinger equation (5). In this Schrodinger equation
we use the semiempirical heavy ion potential

_ 50MeV R,R, R,+R,—R\ zZeé*
0.5 ST s eXp( d )+ R
d=0.63 fm, R, =(1.233n%3—0.978n" 13 fm,n—a or A

(14)

which is fitted to elastic scattering data [19]. A centrifu-
gal term might be added in (14). Such a term as well
as the deviation of the Coulomb potential from zZe?/R
have only negligable effects on the following calculation;
therefore -they are .omitted -here. The potential (14) -is
unrealistic in the interior but it is used only outside the
inner turning point. Because of its applicability to all
kinds of light fragments this potential is well-suited for
the intended unified description of «- and exotic decays.

Instead of solving the Schrodinger equation (5) exact-
ly we calculate A; by the following semiclassical WKB
approximation:

Ro
)LG:;;{'exp(——Z | dR]/il—l;[V(R)Ea]). (15)

Here R; and R, are the inner and outer turning points,
and p is the reduced mass. The tunneling energy E, of
the emitted cluster (the asymptotic energy of the relative
motion) is given by

Ea:(MA+aVMA_Ma)c2 (16)

if all nuclei are in their ground states. The M, are the
rest masses of the bare nuclei stripped from electrons.
Since usually masses of neutral atoms are listed [21]
the extracted Q-values have to be corrected for the small
electronic binding energies [22]. This correction in-
creases the calculated penetrabilities by about a factor
of 3.

For the prefactor (‘knocking frequency’) in (15) we
use

v ] /a-25 MeV

This corresponds to a kinetic energy uv?/2=a-25 MeV
of the emitted fragment inside the barrier, or to a typical
value of 100 MeV for the potential depth of an a-nucleus
potential. Since the reduced mass u scales with a the
prefactor (17) is nearly constant for all decay modes.

The uncertainty of the calculated decay constants Ag
is due to the specific choice of the potential V' (R). Com-
paring the results for various realistic potentials leads
to an estimate of the corresponding error; this error is
about a factor of 2 for As. It includes the uncertainty
of the kinetic energy inside the potential (related to the
potential depth).

Sometimes it is claimed that the semiclassical treat-
ment implies large errors. Since the procedure involves
turning points an improper application of the WKB ap-
proximation may indeed yield arbitrary results. The ex-
pression (15) is, however, well-behaved and deviates from
the exact solution of (5) by less than a factor of 2 (Appen-
dix A). This error is comparable to that due to the uncer-
tainties of V(R), and it is small compared to the uncer-
tainties of microscopically determined spectroscopic fac-
tors. An exact solution of (5) is therefore of no advantage.

3. Results

3.1. Unified decay constant

Equation (6) with (15) and (13) yields the final formula
for the decay constant used in our unified model:
Aunitiea = A6 (Ea) Spunc (@) = A6 (E,) S¥~ VPP

(unified decay constant). (18)



Here the sensitive dependences on E, and on a are expli-
citly displayed but not the less sensitive ones on 4 and
Z. The input of the unified decay constant is completely
fixed by the following quantities:

® Mass and proton numbers of the fragments, 4, Z,
a and z.

® Asymptotic energy E, of the relative motion of the
fragments.

® Semiempirical potential V(R) as defined in (14).

® One parameter S,, for odd and even decay modes,
respectively.

If we used the S, of existing microscopic calculations
there would be no adjustable parameter in the expression
for Auniriea- For an optimal reproduction of all data it
is, however, preferable to treat S, as a fit parameter.
This parameter S, is determined by the fit to decay con-
stants up to a=28:

< Seven=6.3.10"3
*Sed =32.1073

even nuclei

odd nuclei (fitted). (19)
The fitted values are in agreement with theoretical and
experimental a-spectroscopic factors in the Pb region.
Because the expression (18) for the decay constant can
be easily evaluated we do not present an exhaustive list
of decay constants. On request the computer code realiz-
ing (18) is available for an IBM compatible PC on a
54" discette (360 kB or 1.2 MB).

3.2. Test of the model

Our model is extinguished from other ones by depending
on 1 parameter (for even and odd decay modes, respec-
tively) only. This parameter cannot be considerably al-
tered by new experimental data.

First results of the unified formula (18) have been
presented in a previous letter [20]. It has been shown
in [20] that all decay constants known at that time are
well reproduced (within a factor of 4) and that our results
are compatible with all experimental limits.

However, the crucial test of such a model consists
in predicting numbers for unmeasured decays. Since the
publication of the first results [20] some new decay
modes have been measured. The predictions of our mod-
el are compared with the experimental values in Table 1.

Table 1. Predicted half-lives t(a) from [20]. These values were sub-
sequently confirmed by experiment within the range +0.5 for logt

Artaz 42 447 E, logt(a) logtep(a) [Ref]

[MeV]
236py o 2¥Mg+2%%Pb 7990  21.3 21.7 [12]
238py 3281 +%%°°Hg 9147 258 25.3 [9]

S 28Mg+21%Ph 7616 25.6
257 [97
—30Mg+295Ph 7726 258
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The agreement (within a factor of 4) constitutes a success-
ful test of the model.

3.3. Model predictions

For some yet unmeasured decay modes the numerical
values of the predicted half-lives are listed in Table 2.
The branching ratios B=1(x)/t(a) relative to a-decay are
also listed. From Table 1 and previous results we attri-
bute a typical error of about a factor of 4 to these predic-
tions.

In Table 2 we selected mainly decays for which a
detection appears possible. The present borders of detec-
tability are log t<29 and Bz 107 '¢; an improvement
to B> 10 '8 seems to be conceivable [9]. Especially the
decay of 22°Th is interesting because besides the a-decay
three different decay modes should be detectable, namely
the emission of '*C, 2°0 and ?*Ne nuclei.

According to our model the observation of decay
modes with emitted fragments heavier than 3*Si seems
to be hopeless. However, with increasing a our model
is expected to become eventually invalid. Therefore the
last two entries of Table 2 for “®Ar do only mean that
a mechanism comparable to a-decay does not lead to
an observable decay. For sufficiently heavy fragments
fission as a different mechanism will, however, set in.

Table 2. Predictions of (18) for the half-lives 7(a) of some yet unmea-
sured decay modes. Here 7(x) is the experimental half life of the
competing a-decay and B=1(x)/t(a) the corresponding branching
ratio. The typical uncertainty of 7(a) is a factor of 4. The last two
entries should be considered with caution since our model might
be at the border of validity for this heavy fragment

Atz L -2 +1Z E, logt(a) logt(x) —logB
[MeV]
228Th —14C  4214po 2834 23.0 7.78 15.2
229Th —200 4+2%%Pb 4357 25.9 11.36 14.5
—14C +25Po 27.22 26.9 15.5
—2%Ne +2°°Hg  58.02 27.0 15.6
230y —22Ne +2°%Pb  61.59 20.4 6.25 14.1
—2%Ne +2°Pb  61.55 222 16.0
—14C  4215Rp 2847 24.7 18.5
231py —23F  4.208pp 52.01 24.7 12.0 12:7
2327 280 4 2%*Hg  74.54 253 9.36 15.9
35y —2*Ne +2!'Pb 57.55 29.9 16.33 13.6
S28Mg +297Hg 7242 305 14.2
—2%Ne +2°°Pb 58.30 30.9 14.6
2361 —3%Mg +2%°Hg  72.73 29.0 14.9 14.1
—2%Ne +?'?Pb  56.15 29.8 14.9
—2%Ne +2!°Pb 56.94 30.5 15.6
239py -34S +2%Hg 9111 30.9 11.88 19.0
240py — 3481 4+20°Hg 9131 27.3 11.31 16.0
240Cm —32Si +2%%Pb  97.83 21.8 6.37 15.4
2%2Cm 381 +2%%Pb  96.81 24.1 7.15 16.9
243Cm —3%8i 4+2%%Pb  95.05 29.1 8.95 20.2
2icf —45Ar +2%Hg 126.51 349 10.45 24.4
25200 L, 4Ar +206Hg 127.07  29.9 7.91 220
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3.4. Fine structure

Following Hussonnois et al. [25] and Mang [ 5] we pres-
ent a qualitative discussion of the fine structure [11]
of the '*C-decay of 2?*Ra. Most decays (81%) lead to
the first excited state of 2°°Pb at 0.779 MeV although
the penetrability for the decay to the ground state is
32 times larger. Clearly, this phenomenon must be con-
nected to structure effects, that means in our model to
the spectroscopic factor.

Our microscopic calculations (using the spherical
shell model) as well as the expression for A4 (using a
spherical potential V(R)) refer to spherical nuclei. In spite
of this simplification the gross features of exotic decays
could be reproduced over a wide range of nuclei. For
the explanation of the fine structure the deformation has
to be taken into account. On the microscopic level this
can be done by using Nilsson shell model states which
are classified by the usual quantum numbers K*[Nn, A].
The transitions between states with identical Nilsson
quantum numbers are favoured because these states have
enhanced overlaps leading to larger spectroscopic fac-
tors. As stated by Mang [5] for a-decay, the favoured
odd decays behave very much like even transitions.

The parent nucleus ??3Ra may be described in
the rotor model by the mixed parity doublet
3/2* [631]®[761]. The ground state of the daughter nu-
cleus 2°°Pb has the quantum numbers of the odd neutron
in 2g9/2 (single particle level of the spherical shell mod-
el), the first excited state at 0.779 MeV that of 1il1/2
and the second excited state at 1.422 MeV that of 1j15/2.
In contrast to the ground state, the first two excited
states contain large components 3/27[631] and
3/27[761], respectively [25]. Therefore, the transition
into these excited states is favoured by the internal struc-
ture. The actual branching ratio of the two excited states
(roughly 40 to 1) is caused by the different penetrabilities.

If favoured odd decays behave similar as even decays
we should use S2¥°® rather than S3% in (18). With this
specification and using the appropriate penetrabilities
(excitation energies substracted from E,), the favoured
14C-decays of ??3Ra are indeed quantitatively repro-
duced by Aynified-

This discussion leads to the following generalizations
and conclusions:

1. As for a-decay, it can be expected that most exotic
decays from an odd nucleus will end up in excited states
of the (odd) daughter nucleus. As long as no information
about the fine structure is available (from experiment
or from arguments like the ones presented above) we
have to use the energy E, of (16) in (15). This energy
is too large because the (unknown) excitation energy is
not substracted. This means that for the reproduction
of the favoured odd decays a too large penetrability is
inserted in (18). This is effectively compensated for by
the smaller value of the fitted S2%¢ (as compared to S¢'°").
2. If, at a later time, the fine structure is measured for
many exotic decays the unified decay constant should
be used in a somewhat modified way: With the parame-

ter S3¥" renamed as S72¥°“"*¢ and with the correct pene-
trabilities (excitation energies substracted from E,), the
expression (18) with St2veured applies then to even and
to favoured odd decays simultaneously.

3. Besides the even and the favoured odd decays
(point 2) there are unfavoured odd decays. Their spectros-
copic factors can probably not be reproduced by a bulk
formula like (13) because they might depend sensitively
on the specific structure of the parent and daughter nu-
cleus. Even if this structure were known microscopic cal-
culations of the spectroscopic factors would be very cum-
bersome. In particular the quite different deformations
of the parent and daughter nucleus complicate such cal-
culations.

We conclude this subsection by stating that a qualita-
tive understanding of the fine structure is possible in
the framework of our model. No such explanation can
be given within macroscopic models (Sect. 4).

4. Other approaches

The generalization of the microscopic a-decay theory
leads to a successfull explanation of exotic decays. This
does not exclude the possibility of other descriptions.
The obvious alternative is the treatment of exotic decays
as an extremely asymmetric cold fission. A realistic mi-
croscopic approach to fission would require a multi-di-
mensional parameter space. However, all existing fission
approaches to exotic decays are restricted to one degree
of freedom; they are thus macroscopic one-body models.

In these models, the deformation energy of the
fissioning nucleus is parametrized versus the distance be-
tween the fragment centers or some related quantity.
For separated fragments the deformation energy be-
comes the Coulomb plus centrifugal potential. Apart
from the Q-value no information about the microscopic
(nucleonic) structure of the nuclei enter into these mod-
els. The penetration of the classically forbidden deforma-
tion barrier determines the fission probability. The tun-
neling, usually described by the semiclassical WKB ap-
proximation, leads to a decay constant formula of the
same structure as Ag in (15).

Compared to our expression A=21;S=vPS all mac-
roscopic one-body models [23] can be characterized by
setting the spectroscopic factor S=1; the differences in
the frequency v play a minor role. To compensate for
the missing factor S<1 the potential barrier of these
one-body models has to be larger than the one we used
(see e.g. Fig. 1 in [9]). Since only the outer tail of the
potential is well determined by scattering data, the interi-
or part may be parametrized in many ways leading to
the variety of one-body models. An unambiguous deter-
mination of these parametrisations from decay data
seems to be impossible. Therefore, these parameters are
usually fitted and updated in order to obtain agreement
with known decays.

Among the various macroscopic models we discuss
specifically the tuned Gamov factor model of Price [9]
because it depends on 2 parameters only. Price’s model



reproduces well the decay constants of exotic decays.
It uses a Coulomb potential for R>R; and a square
well potential for R<R; where R,(ro)=r,(a'’®+43).
The decay constant is then calculated by

Aprice =V In(2) exp(—21(ro)) (20)

where exp(—21(ro)) is the penetration factor. In this
model the values ry=0.928 fm, v.,.,=4.3-10?° s~* and
Voag=1.1-1025s~* for even and odd decay modes, re-
spectively, are fitted to experiment. The frequencies differ
by a factor of 10* from typical nuclear frequencies, and
the radii are much smaller than measured nuclear sizes.
For the expression (20) one can see how the spectroscop-
ic factor is effectively simulated. If the semiempirical
heavy ion potential (14) is approximated by a simple
square well potential with a realistic radius R;(ro) (see
Appendix B) our unified decay constant (18) reads

gl :% S(a) exp(—21(ro=1.286 fm)). 21)

By comparison with Ap;.. We see that S(a) is replaced
by the factor

Ri(ro=1.286 fm)
S.ee=const.exp| —2 | dR

Ri(ro=0.928 fm)

2u(zZe?
A —E)) 22)

which might be considered as an ‘effective spectroscopic
factor’. The additional area between the artificial R;(r,
=0.928 fm) and the realistic R;(r,=1.286 fm) appearing
in the penetrability compensates for the missing prefor-
mation probability.

From our point of view, all macroscopic models sim-
ulate the structure effects (the preformation probability)
by an enhanced barrier. This kind of approach was also
quite common in the early days of the a-decay theory.

5. Summary

In Sect. 1 it has been argued that the microscopic o-
decay theory might be extended to exotic decays. The
consequently obtained excellent agreement with the ex-
perimental data strongly supports the underlying physi-
cal assumption: The decay constant A=44S is given by
the one-body decay constant A; times the preformation

probability S. From a- to Si-decay this preformation

probability varies over 21 orders of magnitude from
1072 to 1023, The order of magnitude of this factor
and its variation can be understood microscopically.

Our simple unified model covers a range of exotic
decays with emitted fragment mass numbers from a=4
to a= 34, with half-lives from 10! s to 10?8 s, and with
branching ratios relative to « decay from 10~ % to 10~ 1°.
In addition, it provides a qualitative understanding of
the fine structure effects.
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Appendix A: Errors of the WKB approximation

We want to compare the semiclassical WK B-approxima- -
tion (15) with the exact solution of the Schrédinger equa-
tion (5). For this purpose the nuclear (V) and the Cou-
lomb (V) part of the potential
V(R)=Vy(R)+ Ve(R) (A.1)
has to be defined in a sensible way also in the interior;

the original potential (14) is good for the barrier region
only. For the nuclear part we use

~ 50 MeV R,R, 1
fm R,+R, c/at+exp[(R—R,—R))/d]
(A.2)

Vn (R) =

The radii R,, R, and the diffuseness d are the same
as in (14). For ¢=0 the potential (A.2) reduces to the
nuclear part of (14). The choice ¢c=2R,R,/(R,+ R,)/fm
meets two requirements: Firstly, the potential (A.1) ap-
proximates (14) well for Rz R,+ R . Secondly, the po-
tential Vy has a finite depth which leads to the prefactor
(17) (using uv?/2=— Vy(0)).

The Coulomb part of (14) is replaced by that of a
pointlike charge (ze) inside a homogeneously charged
sphere (Ze) with R.=R,+ R .

3 R?
2R\ 73Rz) R<R)

(R>R,).

Ve(R)=zZe> (A3)

==

The potential (A.1) with (A.2) and (A.3) is well-de-
fined in the interior so that both, the WKB approxima-
tion as well as the exact solution of (5), can be deter-
mined. The exact 15 can be written [24] in the following

form,
] /21E,
k= PEa

For this expression the numerically determined real
‘bound state’ solution u(R)=R¢,, has to be normalized

_2E, [u(Ro)®
" hk G(p, kRo)*’

- MelRp2
T

. . (A4)

Table 3. The decay constants 1; from the exact solution of the
Schrodinger equation are compared to Awgp given by the- WKB
approximation. For typical energies of exotic decays they differ
by less than a factor of 2

Decay E, A Awks Awks/Ac
mode (MeV) (s™h (s™h

222Ra(**C) 32.58209 1.7-107% 2.3-107% 14
2321J (*4Ne) 60.43211 44.10°8 6.8-1078 1.5
236py(3°Myg)  71.45492 6.1-107 111071 18
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Ro
to | dR[u(R)|*=1. The irregular Coulomb function is

0
denoted by G. The radius R, must be chosen outside
the range of the nuclear interaction but still inside the
Coulomb barrier. The result does then not depend on
the specific value of R,. For the very sharp resonances
considered here this formula is practically exact; its error
is of order 2 A/E.

For some typical cases, Table 3 compares the exact
results A with the WKB approximation called Adwgg
here. The deviations are within the errors due to the
uncertainties of the potential (Subsect. 2.3). The use of
the WKB approximation (15) is therefore adequate for
the considered decays.

Appendix B: Analytical decay constant formula

In this Appendix we provide a simple analytical formula
for the decay constant. This hand-pocket formula may
be used for a-decay and all exotic decays. For this pur-
pose the realistic potential (14) is simulated by a suitable
square well potential with the radius

R;=rq(a'®+A'R),

ro=1.286 fm. (B.1)

The nearly a-independent prefactor v/(2R,) is fixed to

1.9-10%! s~ 1. The resulting decay constant A, is then
given by the (hand-pocket formula):
Aunitiea 1.9+ 1071 ™1 5@~ /3 exp(— (B.2)

arccos(]/) [/ x— x?)

ad
I= 0315zZ|/ |

1/3+A1/3 E

e ey

where an effective nucleon mass of 931.1 MeV is used.

The input for this formula is 4, Z, a, z, E, of (16) and
S, of (19). All measured exotic decay constants are repro-
duced by formula (B.2) within a factor of 6.
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