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Abstract: Using microscopic wave functions the probability for finding the '*C-daughter nucleus structure
in Ra nuclei is calculated. Together with the penetrability computed for a phenomenological
“C-daughter nucleus potential this yields a theoretical estimate of the decay width.

1. Introduction

In 1984 Rose and Jones ') found a new form of radioactivity: The decay of *’Ra
nuclei by the emission of '*C fragments. Since then a number of such decays have
been reported **). There are two obvious models for the theoretical description of
such a process: It might be treated as a case of asymmetric fission or, alternatively,
as a generalization of a-decay. First quantitative calculations using macroscopic
models of this kind have led to the prediction of such decay modes by Sandulescu,
Poenaru and Greiner °).

For a fission theory one needs a potential landscape of the parent nucleus in
which various paths lead to the '*C- and to the competing @-decay. It can be
expected that the decay widths I' will depend sensitively on the potential and mass
parameters describing the dynamics in this space of collective variables. This provides
a major difficulty for such an approach because no direct experimental information
about these parameters is available (except for the asymptotic region).

In a treatment analogous to an a-decay process only the (experimentally reason-
ably well determined) surface region of the potential in the decay channel is
important (for calculating the penetrability). In a microscopic model the interior
region is then described by many-body wave functions of the nuclei considered.
This picture leads to the concept of the preformation probabilities of the a- or
"C-nucleus in the parent nucleus.

It is the aim of this paper to calculate these preformation probabilities on the
basis of microscopic wave functions. For this purpose we use shell model functions
for *C and the lead nuclei, and allow for pairing correlations in the wave functions
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for the Ra nuclei. Using these wave functions we calculate the widths for the
following decay processes:

14C + 208,209,2]0Pb
- (1.1)

218,219,220
a+ Rn.

2. Model

2.1. OUTLINE OF THE MODEL

For our model of the '*C decay we consider the following microscopic wave
functions: ¢4, 4 for the ground state of the parent nucleus and ¢z = Hug (r)paa
for the open '*C-daughter nucleus channel. Here ¢,, and ¢, are the internal
microscopic ground state wave functions of "*C and of the daughter nucleus,
respectively. The difference between the centre-of-mass (c.m.) coordinates of '*C
and the daughter nucleus is denoted by r and the antisymmetrizer by &. The function
ug (r) describing the relative motion in this open channel will not be needed explicitly
because this part of the process will be treated macroscopically. The open channel
state can be written as |¢g) =] dR uz(R)|R) where we introduced a parameter R
and states |R) defined by

<ri|R>:&¢5(r_R)¢l4¢A' (2.1)

This is the coordinate representation of the states |R) (the nucleon coordinates are
denoted by r;). The set {|R)} of states (2.1) (for different R’s) spans the subspace
of antisymmetrized '*C-daughter nucleus states.

The structure of the open channel for '*C decay is defined by (2.1). We may now
calculate the probability S that the parent nucleus is of this structure or, equivalently,
the percentage of the state |¢4.,,4) Which lies in the subsapce {| R)}. This preformation
probability S is quantum mechanically defined by the expectation value

S=<¢A+l4|ﬁ|¢A+l4> (2~2)

A

of the projection operator P onto the subspace of states |R). The operator P is
given by

=J dR J dR'|R)(N ) (R . (2.3)

The Pauli principle together with the non-orthogonality of the nucleon states in ¢4
and ¢, 1mplles that the states |R) are not orthonormal. Their overlap defines the
norm kernel N (with N # 1):

N(R,R)=Ngr=(RIR). (2.4)

The inverse norm kernel N~ in (2.3) is necessary in order to ensure that P has the
required property of a projector (P*>= P).
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The quantity S is also called spectroscopic factor. (For a possible deviation in
nomenclature see sect. 5). According to eqgs. (2.1)-(2.4) this S is well-defined once
the microscopic wave functions ¢4, ¢4 and ¢ 4., have been specified.

We have now written down the mathematical expression for the probability of
finding the structure of the open channel preformed in the parent nucleus. In order
to connect this probability S with the decay constant we need the following two
physical assumptions (which underly in this or a related form any existing micro-
scopic calculation of a-decay processes):

(i) Only that part of ¢4,,, which is of the structure (2.1) contributes to the *C
decay.

(ii) For this part of ¢4, the relative motion of '*C and the daughter nucleus
can be described by a phenomenological potential U(R) fitted to elastic scattering.
The second assumption means that the motion in the elastic channel ¢ itself is
treated macroscopically. Due to this second assumption the decay constant A =1/ %
is proportional to the A, calculated from the one-body Schrodinger equation with
U(R). Due to the first assumption the proportionality factor is given by the S of
(2.2). Therefore

For the competing e-decay of the parent nucleus ¢4.,4 the above formulae apply
and will be used accordingly: In (2.1) ¢,4¢ 4 has to be replaced by ¢,da410, and r
denotes the corresponding difference of ¢.m. coordinates.

By the simple ansatz (2.5) we circumvent some difficulties encountered in more
sophisticated reaction theories. According to our experience in a-decay calcula-
tions ®) the use of more elaborate but still feasible expressions for A does not lead
to a reduction of the uncertainties (see sect. 3) contained in such a kind of theoretical
estimate.

2.2. PREFORMATION PROBABILITY $

In this section we specify the microscopic many-body wave functions necessary
for the calculation of S.

We use the single particle states |v) = |nljm) of a harmonic oscillator shell model
(SM). The oscillator constants 8 for the light fragments (¢, or ¢,,) are adjusted to
the corresponding experimental root-mean-square radii (8,=0.514fm™ and B;,=
0.350 fm?), for the heavy nuclei (¢atia, Pasio, Pa) We use B =0.168 fm™>. The
light fragments are described by the following SM configurations

la) =|(15)2(15)2),

[*C) = ((15)*(1p3/2))p((18)*(1p3/2)(1p1/2)*)) - (26)

The indices p and n refer to the proton and neutron configurations, respectively.
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All heavy nuclei contain the closed shell lead core [*°*Pb). The state for *Pb is then
|*Pb) = a,,[**Pb) , (2.7)

where a_f,,, is the single particle creation operator for the |v)=|2g,,,) neutron state.
In order to construct the other states of the heavy nuclei we introduce pair creation
operators A (j) creating two protons (or neutrons) of a specific j-shell in a J = O state:

AT()= ¥ (=Y "ajal .. (2.8)

m>0

In the pairing model several j-shells contribute to the actual pair states (the shells
in the range e+ A4 where ep is the Fermi energy and A the gap energy). Treating
the contributing j-shells as degenerate the normalized creation operator A of such
pair states reads

A+=Q"‘/2§A+(jk), Q:Ekjé(zjkﬂ). (2.9)

Here the sum over k runs over all contributing j-shells. For a simple ansatz of the
many-body state we restrict ourselves to the following shells

(= {(lhg/z), (2f3/,) for protons (2.10)

(289/2), (3ds/3), (1iy,/2) for neutrons .

The pairing model describes the ground state structure of the nucleons outside
the closed shell by a product of the appropriate number of pair creation operators
Aj and A} (for protons and neutrons according to (2.10)). This is the seniority zero
state for the even-even nuclei ******Ra. The ground state of the isotope **’Ra contains
in addition one single-particle creation operator aj, which for simplicity is taken
to be the same as that in (2.7). The ground states of the parent nuclei are thus
described by:

|*’Ra) = const (A;)*(A}) a;,[**Pby,
22229R ) = const (A7) *V(A) Pb) . (2.11)

Because of the Pauli principle the A™ violate (in general) the Bose commutation
relations; this implies a non-trivial (however analytically calculable) normalization
constant in (2.11). The considered '*C decays lead to the daughter nuclei described
by [***Pb), a;.|"**Pb) and A;[***Pb); the competing a-decay leads to states of the
form (2.11) with one A, and one A less.

With the definition of all many-body states ((2.6, (2.7) and (2.11)) the spectroscopic
factor S is fixed according to egs. (2.1)-(2.4). The appendix summarizes a number
of technical details of the actual computation of S.
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2.3. DECAY CONSTANT A

In this section we specify the input necessary for the calculation of A,.

The penetration of the performed '“C (or @) through the Coulomb barrier is
described in a Gamov picture, that means by a one-body Schrodinger equation with
a phenomenological potential U(R) fitted to elastic scattering. U(R) is of the form

U(R) = V(R)+ Veou(R)+ V.(R). (2.12)

The Coulomb potential V., is taken to be that of a homogeneously charged sphere
of proper size (asymptotically Z,Z,e’/R). The centrifugal potential is given by
V,=h>L(L+1)/2M where L is the angular momentum of the relative motion and
M the reduced mass. For the nuclear part we employ the following semi-empirical
potential /)

V(R)=—(50 MeV/fm)(R,R,/(R,+ R,)) exp (-(R-R,— R,)/a),
Ry={1.2334;° —0.9784; " *Yim.  (j=1,2), a=063fm. (2.13)

For the present purpose this potential has the advantage that it may be used for
the a-channel as well as for the '*C channel. For the «-case it yields penetrabilities
which compare well with those of Woods-Saxon potentials found in the literature *).
This potential is also tested for larger fragments and thus suitable for the **C channel.
For the "*C case we tried alternatively a Woods-Saxon potential with parameters
(Vo=210.7 MeV, r,= 1.1 fm, a =0.6375 fm) adjusted to '*0->"*Pb scattering *). Com-
pared to (2.13) it yields a deviation of a factor 2.5 to 3 in the decay constant which
is within the range of uncertainty to be discussed more systematically in sect. 3.3.
The decay constant A, is calculated in WKB approximation:

R

B 1/2
dR [<2M/h2>(U(R>—Qa>]) :
(2.14)

Ao=(v/2R,)P, P=exp(—2j

R

!

Here R; and R, are the inner and outer turning points where U(R)= Q,. The
asymptotic kinetic energy of the relative motion Q, is determined by the known
binding energies of the considered nuclei. For the assumed states (sect. 2.2) the
angular momentum of the relative motion is L = 0. For the prefactor v/2R; (“knock-
ing frequency”) we assumed a kinetic energy 3Mv” inside the barrier of 10* MeV
for « and the scaled value 10°(%}) MeV for "*C (see also discussion in sect. 3.3).

3. Validity of the model assumptions

In sect. 2 we presented the model assumptions leading to A = A4S, and the necessary
assumptions about the input for the actual calculation of A, and S. In this section
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we discuss the validity of these assumptions and present estimates of the possible
errors in the calculated S and A,.

3.1. BASIC MODEL ASSUMPTION

For the relation A = AyS we introduced in sect. 2.1 two assumptions, (i)} the
proportionality to the preformation probability S and (ii) the description of the
penetration through the barrier in a one-body picture.

Point (i) contains the central assumption about the decay mechanism: S is the
probability that the structure of the open channel (¢p = Hupd,,da) is already
preformed in the parent nucleus. This channel is assumed to be the elastic channel
(¢4 and ¢4 are the ground states). Therefore this decay mechanism does not allow
for a dynamic formation of the fragments during the process. (Note, however, that
the internal structures of ¢,4 and ¢, are distorted in ¢¢ due to the Pauli principle).

It will be very hard to do a microscopic theory without this simplifying assumption.
The proper generalization of the present model would consist in the inclusion of a
sufficiently large set of additional microscopic states (excited states ¢a.,,; and
Aug ;14,04 ;). In view of the non-feasibility of such a more general model the
basis model assumption about the decay mechanism can be tested only indirectly
by comparing its consequences (our results) with the experiment.

With respect to this central assumption (process proportional to the preformation
probability of the structure of the open channel) we note that it underlies any theory
using a reduced amplitude or a spectroscopic factor. Also a reaction theory with a
transition matrix element of a model hamiltonian H between ¢, ., and ¢g belongs
into this category: Since H contains at most two-particle operators the matrix
element is essentially determined by the overlap (<S'/?) of the last 14 nucleon states
in the bra and ket.

We come now to the second assumption (ii) which greatly simplifies the actual
treatment of the elastic channel. According to (ii) this channel is treated in a one-body
picture using a potential U(R) deduced from fits to the elastic scattering. The
uncertainties in this assumption are reflected by those in U(R) which will be
discussed in sect. 3.3.

In the following two ways one could try to replace the macroscopic treatment of
the open channel according to (ii) by a more microscopic calculation:

One could attempt to solve the resonating group equation for #z(R) using a
microscopic model hamiltonian. In practice this would only shift the uncertainties
of U(R) to that of the effective microscopic interaction and of other ingredients of
the calculation. For the evaluation of the sensitive quantity P we prefer to minimize
the uncertainty by using experimental information (potentials fitted to elastic scatter-
ing). Note also that any model must use the experimental decay energy Q. : Due
to the sensitivity of P on Q, a microscopic calculation of Q, would yield essentially
arbitrary results.
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A second possibility towards a more microscopic treatment of the open channel
is the attempt to restrict the macroscopic picture to the post-contact region and to
use the reduced amplitude £2(R),

Q(R)=(RIN "¢, .4) (3.1)

in the interior. Such a procedure would, however, require a parent state ¢, ,4 which
yields a sensible amplitude £(R) at least up to radii R = R;. The bound SM states
b a1+ (for which the microscopic calculation of 2(R) and S is feasible) can be a
valid description only as long as the "“C fragment is inside the parent nucleus
(approximately for R <7 fm). Therefore the open channel wave function has to be
continued at least down to these radii. It is then simpler to divide the treatment
into the two steps leading to A = A,S: One calculates first the width I" = fiA, for the
solution ¢(R) of a one-body Schrodinger equation with the potential U(R). For
this purpose one may solve the time-dependent Schrodinger equation with the initial
condition that ¢(R, t =0) is localized inside the Coulomb barrier, this means that
the integral I(tr=0)={dR|e(R, t=0)] over the interior region is 1. The time-
dependent solution ¢ (R, 1) yields I(1) =exp (—Aof) and thus Ay. The second step
takes then into account the microscopic structure. Due to the given microscopic
structure (¢, .,4) the probability of having initially the two considered fragments
(properly antisymmetrized) is not 1 but S where

S:J dR [Q2(R)|*. (3.2)

This definition of S is identical to that given in (2.2), (2.3). The function 2(R) is
localized in the interior because it is calculated from the bound model state ¢ 4.
Conceptually the £2(R) of the microscopic picture corresponds to the initial wave
function ¢(R, t=0) of the macroscopic or one-body picture.

3.2. UNCERTAINTIES IN THE CALCULATED $

With the definition of the wave functions the spectroscopic factor S is fixed. For
the actual evaluation of the expression for S we used some essentially technical
approximations which are described in the appendix. These approximations have
been checked in similar systems by comparison to (more) exact calculations. The
total error due to these approximations is estimated to be about a factor 2 for S.

The decisive source of possible errors in S is the uncertainty about the true
structure of the nuclei, in particular of the nuclei far beyond the closed shell. We
discuss the following four points (which may not be completely independent):

(i) The use of he harmonic oscillator SM instead of a more realistic SM.

(ii) The configuration mixing of the last 14 (or 4) nucleon states in the parent

nucleus.

(iii) Possible structure effects in the remaining core.

(iv) The ground state spins.
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For (i): For «-Pb and simple SM configurations the use of single-particle func-
tions of a Woods-Saxon SM instead of the harmonic oscillator increases S by about
a factor 2 (table 1 of ref. '%)). Scaling this result to the '*C decay (see eq. (4.2)) we
_ might expect an enhancement of about a factor 10 in S(**C).

For (ii): This point is again most extensively tested for «-***Pb: Going from the
simplest SM configuration of the nucleons outside the lead core to simple configura-
tion mixing (comparable to (2.10)) enhances S by about a factor 5 which is only
slightly increased by further configuration mixing ''). (Also see ref.'') for a dis-
cussion of very large enhancement factors sometimes quoted in the literature). In
the present calculation the pairing correlations could be extended by including
further shells in (2.10). This might, however, increase the clustering of the nucleons
- outside the closed shell above its actual value because of the simplicity of our ansatz
(eq- (2.9)). Such an extension had to be accompanied by the introduction of realistic
mixing coefficients in (2.9).

For (iii): The definition of the states in sect. 2.2 implies that the daughter nucleus
is contained as a core in the parent nucleus. That means that the core overlap of
these A or (A+10) neucleon states (which is contained in (R | ¢4 4)) comes out as
1. Any difference in the core structure between the parent and daughter nucleus
may lead to a substantial reduction of S because the core overlap involves many
nucleons. In particular we might think of a difference of the internal deformation
(which in principle can be expressed by a suitable configuration mixing in the
spherical SM basis). To some degree such a difference of the internal deformation
is to be expected (a) for the a-decay of Ra because we are far away from the closed
shell and (b) for the odd isotope because the unpaired nucleon may induce different
deformations (see next point (iv}).

For (iv): We assumed in “’Ra, ***Rn and **’Pb the same single particle state for
the unpaired nucleon. This is done for simplicity and because of the lack of
unequivocal information about the ground state spins of **Ra and ***Rn. For the
reported '*) spin assignments 3 for *’Ra and 3 for *’’Rn we had to insert different
states for the last nucleon in the parent and daughter nucleus. This leads to the
following three effects: First, the emitted fragment must carry away an angular
momentum L # 0 causing a moderate decrease of the penetrability and a correspond-
ing increase of S, (70% for @ and 60% for '“C). Second, there will be a moderate
change in S due to the difference in the single-particle states entering in the overlap
(R|¢ay14)- Third, the unpaired nucleon introduces a deviation from the spherical
symmetry due to its angular momentum /# 0. Such a deviation will induce some
(small) intrinsic deformation which is now different for the parent and daughter
nucleus. According to point (iii) this may then lead to a substantial reduction of S.
Unfortunately there is no easy way to take into account this third effect in our
microscopic calculation.

From the discussion of the points (i) to (iv) an error of a factor 10 does not seem
unlikely in the calculated S. The possible enhancement due to (i) and (ii) is expected
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to be larger for S(**C) than for S(a). A reduction due to (iii) is likely to occur for
S(a) and for the odd isotope (see (iv)). :

It will not be easy to obtain a drastic reduction of the discussed uncertainties by
an improvement of the model input. In particular the technical difficulties in the
computation of S (see for example the determination of N in the appendix) require
the use of not too complicated wave functions.

3.3. UNCERTAINTY IN THE CALCULATED A,

We discuss the possible errors in Aq due to the following two points:

(i) Use of the WKB approximation in the form (2.14).

(ii) Uncertainty in the potential V(R).

The first point can be checked by comparing the approximation (2.14) with exact
solutions of the one-body Schrodinger equation. Such a comparison has been
performed ') for a number of a-decays and several Woods-Saxon potentials (but
not for the present choice (2.13) which is impracticable in the interior). The deviations
between (2.14) and the exact solutions were found to be limited by about 50%.
Since the penetrabilities P for the '*C are of the same order of magnitude we may
expect similar deviations in this case. Such errors are about one order of magnitude
smaller than those introduced by the second point (ii); therefore it is of no advantage
to replace the simple expression (2.14) by an exact numerical solution.

In view of this comparison with fully quantum mechanical solutions the appear-
ance of the prefactor v/2R; in (2.14) does not imply the assumption of a correspond-
ing classical motion. The simplified form (2.14) used here is of advantage for the
discussion of the influence of the uncertainty of V(R) which is the decisive origin
of errors in A,. We discuss now the possible errors in the calculated A due to the
uncertainties of V(R) in the interior and around R = R,. /

Since the elastic scattering is not sensitive to the potential in the interior (because
of the strong absorption) the potential depth is experimentally undetermined. This
is also the reason for the possibility of the functional form of (2.13) which in contrast
to a Woods-Saxon potential does not yield a sensible depth in the interior. For the
experimentally undetermined potential depth we have to use a theoretical estimate.
Fortunately, A is not very sensitive to this quantity so that the error due to an even
crude estimate is tolerable. The values actually used in (2.14) (10> MeV for a and
10%(%)) MeV for *C) correspond roughly to a folding potential. We expect that these
values are sensible up to a factor 4 (assuming the pessimistic factor 10 would not
greatly change the final uncertainty estimate). This yields a possible error of a factor
2 up or down in Aq.

As it is well-known, the penetrability P is rather sensitive to small changes in the
potential because V(R) enters into the exponent. However, only values V(R) for
R > R; count. At the radius R; the nuclei are just touching each other and start to
feel the nuclear attraction (| V(R;)| is about 60% of Vo (R;) for “C). A few fermi
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outside R, the potential U(R) is purely Coulomb and no uncertainty occurs. For
a simple estimate of the uncertainty in P we argue as follows: The quantity which
is reasonably well fixed by scattering experiments is the sum R,= R;+ R, of the
radii of the two nuclei. The uncertainty AR of R, will be somewhere between 0.1
and 0.5 fm. A difference AR leads to a change in the penetrability (P - P’) of the order

P'/P~exp (2q4R), (3.3)

where q is a typical value of the wave vector under the top of the barrier. For '*C-Pb
the height of the Coulomb barrier is B=70 MeV, and #°¢’/2M = B—Q, yields
g=5fm~'. Using AR=0.25fm the ratio P'/P comes out as 12. For a potential
corresponding to an average value R, we obtain thus an uncertainty of a factor 3.5
_up or down. Combining this uncertainty with that of the prefactor we estimate that
our calculation yields A, values which are realistic within a factor 4.

The above arguments show that there is indeed a considerable uncertainty in the
calculated A,. We note, however, two points: First, the uncertainty is largely due
to the penetrability and seems to be unavoidable in any kind of reaction theory.
Second, the uncertainty is not arbitrarily large.

For an illustration of the second point we remark that a change of AR~2.3 fm
is required in order to eliminate a preformation factor S~ 107" in (2.5) (which is
as we will see a realistic value for S). Compared to the resulting factor (10'°) in P
the change AR is indeed relatively small (25% of R;). In the early days of a-decay
calculations '*) it was common to reproduce the experimental data by such an
adjustment of ‘“‘effective” nuclear radii (that means using A =A, or S=1 in (2.5)).
From our present knowledge of nuclear sizes such an attempt seems to be unrealistic.

Some non-negligable change in A, may result from the effect of deformations on
the barrier. Landowne et al '°) estimated that this effect yields an enhancement
factor of 16 for Ay(**C) and 1.2 for Ay(a).

4. Results and discussion

4.1. RESULTS

Tables 1 and 2 summarize the results of the a- and '*C-decay calculations for

. 22222 . . . 59
the nuclei *********Ra. For the comparison we introduced the “experimental

TABLE 1

The a-decay energies Q, and decay widths [, = fiA,,, for three Ra isotopes, along with the experimental
preformation factors S.,, which are compared with the calculated spectroscopic factors

Q. (MeV) I, (MeV) P Sexp S Seep/S
222Ra 6.68 1.20-107% 31-107% 1.5-1072 59-1072 0.25
23Ra 5.98 4.63-107%8 2.7-107% 6.9-107* 5.4-1072 0.013

*Ra 5.79 1.47-107% 33-107% 1.8-1072 6.7-1072 0.27
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TABLE 2

Same as table 1 for the "*C decay

Q4 (MeV) I, (MeV) r./r, P Sexp S Scxp/S
222Ra 33.05 444-107* 37-107" 8.0-107% 2.5-107° 1.8-107"" 140
223 Ra 31.84 278-1077  6.0-1071° 6.1-107% 2.0-107" 1.5-107" 1.3
“Ra 30.53 632-107%  43-107'" 21-107% 13-107° 13-107° 10

The small ratio I,,/f, of the decay widths (of the order 107'% is predominantly due to the
corresponding ratio of the preformation probabilities.

spectroscopic factor S.,, given by the ratio of the measured decay constant A.,, to
/\0’

Setp:/\cxp//\o (41)

This is a common procedure in cluster transfer reactions where these factors might
be obtained for example by relating the experimental to the DWBA cross section.
Intheinterpretation (4.1) the experimental data provide a rather direct information
about the preformation probabilities. For the considered decay modes («- and
'“C-decay) these probabilities vary from 107" to 10~ '°. The uncertainty in A, (see
sect. 3.3) can only slightly modify this variation over many orders of magnitude.

4.2. DISCUSSION

Roughly speaking the spectroscopic factor is proportional to the squared product
of the overlaps between the nucleon states in the emitted fragment and the last 4
or 14 states in ¢4.,4. (The actual structure is more complicated due to N7'in eq.
(2.3).) Disregarding the specific structure of these nucleon states one would therefore
expect that the values for S scale as follows

S(MC)~[S(a)]"*. (4.2)

Using a value Se.,(a)~ 1072 typically found for even nuclei in the lead region this
crude estimate yields S(**C)~107". The fact that the actual values for S(**C) are
smaller indicates that the correlations of the relevant nucleons in ¢4, tend to be
more «-like than “C-like.

The microscopically calculated S roughly reproduces the variation (10 *to 107'%)
of the experimental preformation factor. The Tables show, however, also two
discrepancies: (a) the a-decay probabilities are overestimated in contrast to an
underestimate for '*C and (b) the actually observed reduction for the odd isotope
is not reproduced. In view of the discussion of the points (i) to (iv) of sect. 3.2 the
explanation is probably as follows:

More realistic correlations of the nucleons forming the fragment will increase
mainly S('*C) (recall the factor 10 for Woods-Saxon functions). Slight differences
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in deformation between the parent and daughter nucleus can substantially reduce
the core overlap (which is 1 for the present states). According to peint (iii) and (iv)
of sect. 3.2 such an effect is to be expected for the a-decay and, in addition, for
both decay modes of the odd isotope.

For the valuation of the theoretical results one should consider the following
point: S(**C) is related to the squared product of the overlaps of the last 14 nucleon
states (those of '*C with the last 14 states in Ra). A factor 100 in S then corresponds
to a change of only 18% in each single-particle overlap. Similarily, S depends
sensitively on differences in the core structure (point (iii) of sect. 3.2). In view of
this sensitivity of S the presented rough reproduction of the data is satisfying. The
overall agreement may also be considered as a verification of the basic model
assumption, namely that the decay width is proportional to the degree to which the
structure of the open channel is preformed in the parent nucleus.

This reproduction of the experimental data can, of course, not exclude the
possibility of a different decay mechanism. In this connection we note that also the
macroscopic fission model introduced by Shi and Swiatecki '®) accounts for the
data. In this model the formation of the fragments is preceded by the deformation
of the parent nucleus. Since this deformation regime is energetically forbidden it
contributes to the penetrability integral. The deformation part of the potential is
smoothly connected to the surface region which is described by the proximity
interaction. For this potential the penetrability P is calculated with the same
expression (2.14) as used here. Due to the very different potential the resulting
values for P are smaller than ours by roughly a factor of order 10'°. Since the
physical assumptions of this and of our model are rather different we do not see
how a connection between this factor 107'° and our microscopically calculated
preformation probabilities could be made.

5. Conventional spectroscopic factor

The meaning of the experimental spectroscopic factor S,,, is fixed by its relation
(4.1) to the experimental decay constant. This concept of S,,, is used in an analogous
way for a-transfer reactions. Such a procedure fixes the meaning of the spectroscopic
factor to the degree to which the underlying one-body model (A, in (4.1) or the
DWBA cross section) is well-defined.

Sect. 2.1 explained (see eq. (2.5)) that the theoretical S of (2.2) is the quantity
to be compared to S.,,. In publications before 1975 (and partly also later) a different
theoretical quantity was considered as the appropriate spectroscopic factor and
compared to S.,. We call this different quantity “conventional spectroscopic factor”
S.onv; comparisons between S and S.,., may be found in ref. '’). In the notation
of sect. 2.1 the conventional spectroscopic factor is given by

Seomy ={Bas14|Olbpars)  withO= j dR [RXR| . (5.1)
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. The comparison of this expression with (2.2), (2.3) shows that S, results from
the neglect of the inverse norm kernel in (2.3). It turns out that this neglect may
change the results by orders of magnitude (see also below).

The neglect of the norm kernel was of course not explicitly introduced as an
approximation, rather it was hidden in another approximation of the reaction theory
leading to So,,: The open channel state is of the form | dR u(R)|R) with the |R)
of {2.1). Since the exact equation for u(R) can usually not be solved u(R) was
taken to be the wave function of relative motion and approximated by the solution
of a phenomenological potential (distorted wave approximation). However, u(R)
is the weight function of the non-normalized basis states |R) and contains therefore
necessarily a normalization part N2 (because the complete wave function must
be normalized). A distorted wave approximation for u(R) neglects by its construction
this normalization part.

The neglect of N~"in (2.3) leads to an underestimate of the preformation
probability by a factor S/S..,.,. We calculated also S, for the decay of Ra and
obtained the following typical ratios:

S/ Sconv=

10> for a-
{ 3 or a-decay (52)

4-10°  for '*C decay.

For a-decay this ratio provided an explanation of the long-standing problem of
absolute decay rates ). The two numbers in (5.2) show that the norm defects of the
states |R) scale similarily as it is expected (4.2) for the spectroscopic factors
themselves. We note that a theory for '*C decay based on S.,, would be a complete
failure: It would yield S.onv/Sexp= 107" (to be compared to our result S/8cxp=
107" - 107%).

Appendix

This appendix summarizes the major technical steps for the evaluation of the
spectroscopic factor S. In particular the following points are discussed:

- Treatment of the centre-of-mass motion (cmm).

- Reduction of the many-body overlaps.

- Projection onto the nucleon states above the Fermi level.

- Completeness of the basis of gaussian functions.

The SM configurations of sect. 2.2 define the SM states (vg: Fermi level,
|0): vacuum):

@)= 11 al0). (A1)

v<<vp

The corresponding SM functions (r,| @) contain in contrast to the internal SM
functions (r;|¢) used in sect. 2.1 a spurious cmm of gaussian form. This cmm is
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split off from the SM function of the light fragment ('*C, ) but (as an approxima-
tion) not split off for the heavy (A = 208) nucleus. This means that the states (2.1)
are replaced by

<"i|R>:-9¢5(R14_R)¢14¢A, (A2)

where R, is the c.m. coordinate of '*C and » are the A+ 14 nucleon coordinates.
This approximation has been tested for the a-Pb system; scaling the calculated
deviation '°) for a-Pb with a factor 1 we obtain an estimated error of about 40%
for S(**C) due to the replacement (eq. (A.2) instead of (2.1)).

As a next step we introduce a basis of gaussian functions localized at discrete
points Ry :

hi(R)cexp (~B(R—R,)*) . (A3)

For a suitable choice of B8 the matrix elements of the norm kernel N between two
such gaussian functions reduce to

(| N|hi) = (AD,(R) D | AD (R, D) . (A.4)

The gaussian functions thus transform (R, — R) ¢, (with the internal wave function
¢,4) into the SM function &,, with a cmm localized at R.

The r.h.s. of (A.4) is now an overlap between different Slater determinants of
non-orthogonal nucleon states. The most convenient procedere for evaluating this
overlap is the following: The nucleon states |w(R)) (w=1,...,14) of ®,,(R) are
orthogonalized (but not normalized) onto the states |v) occupied in &@,. Then (A.4)
is given by the determinant of the overlap matrix B,, = (i (R,)|i'(R.)) where |@)
are the orthogonalized states. For the orthogonalization one needs to know the
single particle overlaps (u(R)|v) where |w) is the |1s) or |[1p, m = 0, £1) state localized
at R and |v) an oscillator state (or different frequency) localized at the origin. For
[1s) the analytical expression of this overlap is given in the app. of ref. '*); from
this expression the other overlaps are obtained by a derivative with respect to R.

Also the overlap of (R| D414y With a by reduces to an overlap between Slater
determinants which can be evaluated in a similar way.

The orthogonalization onto the states |v) occupied in @, can be expressed by

)= Qlu) where

occupied .
i

x 1
O=1-% c,|v)v], cy={ if is nd,. (A.5)

0 empty
For partially occupied l-shells the calculation can no longer be reduced to an
orthogonalization procedure for each |u) state separately. In this case the exact
calculation may become rather tedious (in particular for the a-decay of Ra) and
has been replaced by choosing effective ¢,’s for the corresponding shells. The
resulting error is estimated to be limited by about 60% for a and 10% for "*C.
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With the described techniques the quantities (R|N|R’) and (R|®,,,4) can be
calculated in the space {h,} of gaussian functions. As a last point we discuss the
completeness of this space. Due to the non-orthogonality of the h; the distance AR
between two neighbouring h, cannot be made arbitrarily small (otherwise the A
become numerically linearly dependent rendering the inversion of the overlap matrix
(hi| ey impossible). Antisymmetrization effects are important if the velocity of the
light fragment is smaller than the Fermi velocity or, equivalently, if its momentum
is below 14pg (or 4pr) where pe is the Fermi momentum. One expects then that a
grid distance AR of

7/AR ~14pg/#,  AR~0.17 fm (A.6)

is sufficient. The actual results for the integral quantity S converge already for
AR < 0.4 fm. The numerical error of our calculation due to finiteness of the space
of gaussian functions is negligible.
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