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I. DECAY CONSTANT

A. Introduction

Cluster radioactivity is the spontaneous decay of nuclei by the emission of clusters like for
example �-particles, C-, Ne-, Mg- or Si-nuclei. The spontaneous emission of clusters heavier
than �-particles is called exotic decay.

The traditional �-decay theory can be extended to the exotic decays.1;2;3 After a short
presentation of the underlying physical model we de�ne and evaluate Gamow's decay con-
stant and the spectroscopic factor (this section). In Section II the model expression for the
decay constant is applied to a representative sample of exotic decays. The results are further
discussed in Section III. This handbook article is restricted to the basic formulae. It contains,
however, all information necessary for the easy application to other decays.

We consider the decay of a nucleus with (A + a) nucleons and (Z + z) protons

A+a(Z + z) �! AZ + az: (1)

In the energy regime of interest, the nuclei are well described as many-body systems of
nucleons. The bound many-body wave functions of the parent and daughter nucleus and of
the emitted cluster are denoted by

�A+a ; �A ; �a: (2)

The open exit channel in (1) is made up by �A and �a. The decay is due to the coupling of
the initial state �A+a to this exit channel. The process is treated in the following model: With
a certain probability S the parent nucleus wave function �A+a lies in the open channel space
�A 
 �a. Only this part of the wave function contributes to the decay (1). Within the space
�A
�a the problem reduces to a one-body problem, that means to the determination of the
relative motion between the daughter nucleus and the emitted cluster. The relative motion
amplitude penetrates through the Coulomb barrier and determines the decay constant.

This model leads to a decay constant of the form

� = �G S; (3)

where the spectroscopic factor S is the probability of �nding the structure �A 
 �a in the
parent nucleus, and �G is the Gamow decay constant of the reduced one-body problem. The

1Published in Nuclear Decay Modes edited by D. N. Poenaru, IOP Publishing, Bristol 1996, p. 337 { 349
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information about the many-body structure is contained in the spectroscopic factor. The
half-life is given by � = ln 2=�.

B. Gamow Decay Constant

In this subsection we evaluate the one-body decay constant �G. Gamow's one-body model
explains the Geiger Nuttall law, i.e. the strong variation of the half-lives with the decay
energy. In some form it is contained in every approach to �- and exotic decays, including
macroscopic �ssion models.4

The decay constant �G can be evaluated with su�cient accuracy by using the semiclassical
WKB approximation

�G � v

2Ri

exp
�
� 2

Z Ro

Ri

dR

s
2�

�h2
[V (R)� EaA ]

�
: (4)

This decay constant is the product of the knocking frequency � = v=2Ri and the barrier
penetrability. The inner and outer turning point, Ri and Ro, are determined by the condition
that the potential V (R) equals the tunneling energy EaA. The reduced mass of the emitted
fragments is denoted by �. For the fragment interaction we use the semiempirical heavy ion
potential

V (R) = �50MeV

fm

RaRA

Ra +RA
exp

�
Ra +RA �R

d

�
+
zZe2

R

d = 0:63 fm; Rn = (1:233n1=3 � 0:978n�1=3 ) fm; n = a or A

(5)

�tted to elastic scattering data.5 This potential can be applied to �-decay and to exotic
decays as well. At the inner turning point Ri the two fragments are just beginning to feel
the nuclear interaction. In (4) the potential V (R) is used for radii R � Ri only, i.e. for radii
where it is reasonably well determined from scattering experiments.

If the angular momentum of the emitted cluster is known a centrifugal term might be
added to (5). However, such a term { as well as the deviation of the Coulomb potential
from zZe2=R { has only a negligible e�ect on the barrier penetrability; therefore these
contributions are omitted.

The tunneling energy EaA is given by

EaA = (MA+a �MA �Ma) c
2 � Eex: (6)

The Mi are the rest masses of the bare nuclei stripped from electrons. Since usually the
masses of neutral atoms are listed6 the extracted Q-values have to be corrected for the small
electronic binding energies.7 This small correction has some e�ect on �G because the penetra-
bility depends sensitively on the tunneling energy. The tunneling energy (6) is diminuished
by a possible excitation energy Eex of the fragments.

In the interior (R � Ri) the kinetic energy � v2=2 equals approximately the potential
depth. A realistic potential depth is of the the order a � 25MeV corresponding to a 100MeV
deep �-nucleus-potential. The knocking frequency becomes then

� =
v

2Ri

=

s
a � 25 MeV

2�R 2
i

(7)



BLENDOWSKE, FLIESSBACH, WALLISER 3

The frequency � is nearly constant for all decay modes since the reduced mass � scales
roughly with a.

The results of the WKB approximation (4){(7) have been compared to exact solutions
of the Schrdinger equation of the reduced one-body problem.3 It has been found that in the
considered range of fragments and decay energies the error is less than a factor of two. This
is comparable to the uncertainty due to the speci�c choice of the potential V (R).

C. Spectroscopic Factor

In this subsection we de�ne the spectroscopic factor S on the basis of the many-body
states (2). The structure of the resulting expression and explicit numerical evaluations lead to
a semiempirical approximate formula for S. This formula allows a uni�ed (valid for di�erent
cluster sizes) and simple description of favoured decays.

The open channel state describes the relative motion of the clusters �a and �A. It is
therefore a superposition of the basis states

hr1; :::; rA+a�1 jR i = A (�(R� raA)�a �A) (8)

with di�erent values ofR. In coordinate space the states jRi depend on (A+a�1) coordinates
which are equivalent to the (A�1) internal coordinates of the daughter nucleus �A, the (a�1)
internal coordinates of the emitted fragment and the relative motion coordinate raA. Due to
the antisymmetrization A the states jRi are not normalized

hR jR0 i = (1� cK)
R;R0 = �(R�R0)� K(R; R0) : (9)

We de�ne the projection operator bP onto the open channel space fjR ig

bP =
Z
d3R

Z
d3R0 jR i

 
1

1� cK
!
R;R0

hR0 j : (10)

The inverse of the norm operator 1�cK guarantees that bP 2 = bP ; this condition is a necessity
for a projection operator. The spectroscopic factor

S = h�A+a j bP j�A+ai (11)

equals the percentage to which the state �A+a lies in the space �A 
 �a spanned by (8). In
other words, it is the quantum mechanical probability of �nding the open channel structure
preformed in the parent nucleus. Therefore S may also be called preformation probability .

Cluster spectroscopic factors found in the literature before 1975 neglect the e�ect of the
norm operator; they are indeed obtained from (11) and (10) with cK = 0. The operator (10)
with cK = 0 is, however, no longer a projection operator, and consequently (11) is not a
properly de�ned quantum mechanical probability. The neglect of the proper normalization
results in spectroscopic factors which are too small by many orders of magnitude for heavy
fragments.

After a suitable choice for the many-body wave functions (2) the spectroscopic factor
(11) is �xed and may be calculated. Such microscopic calculations have been presented for
�-decay 8;9 and for 14C-decay.1 The many-body states employed are those of the spherical
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nuclear shell model including con�guration mixing. These calculations lead to the following
orders of magnitude for the spectroscopic factor:

S �

8>>><>>>:
10�2 212Po! � + 208Pb
10�8 222Ra! 12C + 210Pb
10�10 224Ra! 14C + 210Pb
10�11 226Th! 16O+ 210Pb

(12)

The calculated numbers for S and �G of (4) yield decay constants � = �G S which are of the
right absolute size.

The performance of microscopic calculations is rather tedious, in particular because of the
appearance of the norm operator 1�cK in (10). Therefore, we introduce a bulk spectroscopic
factor which is simple to comprehend, easy to handle, and which covers the whole variety of
favoured decays.

The spectroscopic factor (11) can be related to the squared product of the overlaps
between the single particle states in �a and the upper ones in �A+a forming the fragment.3

The product contains e�ectively a� 1 single particle overlaps because �a depends on a� 1
internal coordinates. This structure implies that many single particle states contribute to S,
and that S will roughly scale with the (a�1)-st power of the square of a single particle overlap.
The �rst point suggests to use a bulk formula. The second point indicates that, compared to
�-spectroscopic factors S�, the spectroscopic factors for heavier fragments should scale like

Sbulk = S (a�1)=3
� (bulk spectroscopic factor): (13)

The numerical expense of microscopic calculations, the uncertainties originating from the
choice of the nuclear many-body wave functions, and the relatively large number of con-
tributing single particle functions justify the use of the bulk spectroscopic factor for practical
purposes. This will be done in the following.

The bulk spectroscopic factor will not be applicable to cases governed by speci�c structure
e�ects. By speci�c structure e�ects we mean for example that the symmetry of the wave
functions forbids the considered decay. For many-body states, such decays are normally not
exactly forbidden but they are hindered or unfavoured ; an example will be discussed in
section III.A. For these unfavoured decays, eq. (3) together with the original spectroscopic
factor (11) has to be used. The bulk expression (13) is adequate for the so-called favoured
decays only.

II. RESULTS

Eq. (3) with (4) and (13) yields the �nal expression for the decay constant

�theor = �G(EaA) S
(a�1)=3
� : (14)

The sensitive dependences on EaA and on a are explicitly displayed but not the less sensitive
ones on A and Z. The input of the theoretical decay constant is completely �xed by the
following quantities:

� Mass and proton numbers of the fragments, A, Z, a and z.
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� Asymptotic energy EaA of the relative motion of the fragments.

� Semiempirical potential V (R) as de�ned in (5).

� One parameter S�.

The parameter S� is determined by a �t to even favoured decays up to a = 28:

S� = 6:3 � 10�3 (15)

In the presented form the theoretical expression (14) contains just one adjustable parameter.
Moreover, the �tted value (15) is in good agreement with theoretical and experimental �-
spectroscopic factors in the Pb region.

Eq. (14) constitutes a uni�ed description of cluster radioactivity, ranging from �-decay
to exotic decays in a wide range. It displays the systematic dependence on the mass and
proton numbers, and on the tunneling energy. Judging from the results, the decay constant
�theor is applicable at least up to fragment masses a � 34.

According to the introduction of the bulk spectroscopic factor (13) the application of
(14) is restricted to favoured decays only . For unfavoured decays (i.e. for speci�c structure
e�ects) eq. (3) with (11) is the valid expression.

In previous publications we used two di�erent parameters, Seven and Sodd, for even and
odd decays, respectively.2;3 The �t for Sodd contained, however, some ambiguity because the
�ne structure of odd decays is in most cases not resolved experimentally. The measured decay
constant of an odd decay might be a mixture of favoured decays (suppressed by a lower EaA

and thus a smaller penetrability) and unfavoured decays. We therefore decided to apply (14)
to favoured decays only.

Since the expression for the theoretical decay constant can be easily evaluated we do not
present an exhaustive list of decay constants. For a convenient application of our formula we
o�er two possibilities:

1. On request the computer code realizing (14) is available for an IBM compatible PC-AT
on a 51

4
00 discette (360 kB or 1.2 MB).

2. In the Appendix the expression (14) is further simpli�ed. The resulting formula may
be evaluated in a few steps on a hand-pocket calculator.

Table 1 contains a representative sample of decays from even parent to even daughter nuclei
which are always favoured. All considered decays go to the fragment ground states, i.e.
Eex = 0. For the experimental data we refer the handbook contribution by Bonetti et al.10

and references therein. Some of these decays have been correctly predicted by our formula
prior to the experiment.2

The last entry (46Ar-decay) in Table 1 is probably outside the validity range of our model.
The bulk spectroscopic factor (13) scales exponentially with the fragment number a. With
increasing fragment size the decay probability will eventually become unmeasurably small.
In particular, our model cannot be extended to �ssion processes; �ssion is due to a di�erent
mechanism.

Table 2 and 3 present decays of odd parent nuclei to ground-state and to excited states
of the daughter nucleus. Possible excitations of the cluster require more energy than that of
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the daughter nucleus. The lowest excitations are, therefore, those of the daughter nucleus;
only these excitations are considered. All theoretical half-lives in Table 2 and 3 are calculated
with the parameter (15) �xed by a �t to known even decays. Therefore, the calculated �theor
are valid predictions only if the speci�c decay is favoured . For the experimental values we
refer again to Bonetti.10

In most cases the �ne structure of the odd decay is not resolved experimentally. Then
it is not known to which speci�c daughter nucleus state the measured half-life should be
attributed to. In these cases we adopt the following procedure: We assume that the measured
decay is a favoured one. The experimental half-life �exp is attached tentatively to the speci�c
transition suggested by �theor. Accordingly we classify decays into lower states as hindered or
unfavoured. The sensibility of this procedure is veri�ed in the case of the 14C-decay of 223Ra
with known �ne structure (section III.A).

III. DISCUSSION

A. Fine Structure

The presented evaluation of (3) refers to spherical nuclei; the microscopic calculations
use spherical shell model functions, and �G is evaluated with the spherical potential (5).
In spite of these simpli�cations, the expression (14) reproduces well the gross features of
the considered decays. The deformation is obviously of minor importance for the overall
behaviour.

For a detailed consideration of structure e�ects the deformation has, however, to be taken
into account. On the microscopic level this can be done by using Nilsson shell model states
which are classi�ed by the usual quantum numbers K�[Nnz�]. The transitions between
states with di�erent Nilsson quantum numbers are suppressed because the overlaps contained
in the spectroscopic factor (11) are zero or at least particularly small. Such decays are
unfavoured.

The �ne structure11 of the 14C-decay of 223Ra has been discussed by Hussonnois et al..12

Following Hussonnois et al. we discuss the �ne structure of this decay (shown in Figure 1)
with respect to our model. Most decays (81%) lead to the �rst excited state of 209Pb at
0:778 MeV although the penetrability for the decay to the ground state is 32 times larger.
This phenomenon is clearly connected to structure e�ects, that means to the spectroscopic
factor. The parent nucleus 223Ra may be described in the rotor model by the mixed parity
doublet 3=2� [631]
 [761]. The ground and excited states of the daughter nucleus 209Pb have
the quantum numbers of the odd neutron in a single particle level of the spherical shell model
outside the lead core. In contrast to the ground state, the �rst two excited states contain
substantial components 3=2+ [631] and 3=2� [761], respectively.12 Therefore we expect that
the transitions to these excited states are favoured by the internal structure.

Using the form (3) we determine experimental spectroscopic factors from

Sexp =
�exp
�G

: (16)

Gamow's decay constant �G is calculated using the tunneling energies EaA given in Table 2;
the excitation energies are taken into account according to (6). The resulting experimental
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spectroscopic factors (given in Figure 1) reect the discussed structure e�ects: The decay to
the ground state is unfavoured, the decays to the �rst excited states are favoured. For the
favoured decays our bulk spectroscopic factor Sbulk = (6:3 � 10�3)13=3 = 2:9 � 10�10 from (13)
and (15) agrees well with Sexp.

From the experimental spectroscopic factor we see that the transition to the ground
state is hindered by a factor of 150. For a microscopic description of this decay we have,
in principle, to go back to the original expression (11). Microscopic evaluations of (11) for
unfavoured decays are, however, di�cult. They require the knowledge of the speci�c nuclear
structure in terms of the many-body wave functions of the parent and the daughter nucleus.
In addition the quite di�erent deformations of these nuclei complicate such calculations.

As already discussed, one could try to use a bulk formula for unfavoured decays, too,
using a separate parameter S�;unfav instead of (15). However, the degree of unfavouredness
(due to the speci�c microscopic structure e�ects) is likely to be quite di�erent for various
nuclei. It is therefore doubtful whether a bulk formula like (13) with an extra �t parameter
S�;unfav makes sense for unfavoured decays. No such attempt is made in this paper.

An evaluation of (11) for each speci�c �nal state appears not feasible. Irrespective of this
restriction our model provides a qualitative understanding of the �ne structure.

B. Other Approaches

The generalization of the microscopic �-decay theory leads to a successfull and consistent
model of cluster radioactivity. This does not exclude the possibility of other descriptions.
The obvious alternative is the treatment of exotic decays as an extremely asymmetric cold
�ssion.4 All existing �ssion models for exotic decay are restricted to one or few macroscopic
degrees of freedom; in this sense they are macroscopic models. These models might be derived
microscopically by evaluating the potential landscape and the inertial parameters starting
from a many-body Hamiltonian.

In �ssion models, the deformation energy of the �ssioning nucleus is parametrized versus
the distance between the fragment centers or some related quantity. For separated fragments
the deformation energy becomes the Coulomb plus the centrifugal potential. The penetra-
tion of the classically forbidden deformation barrier determines the �ssion probability. The
tunneling is usually calculated using the semiclassical WKB approximation. This leads to a
decay constant ��ssionG which is of the same form (4) as our �G.

The experimental decay constants are reproduced by � = ��ssionG in the �ssion models
and by � = �GS in our approach. The preformation probabilities are quite small numbers,
S = 10�10 ::: 10�23 (for C- to Si-decay). In order to reproduce the data the �ssion models must
use much larger potential barriers than the ones given by (5). E�ectively, our preformation
probability S is replaced by the penetration factor due to an additional barrier inside the
Coulomb barrier. Poenaru et al.4 interpret this additional penetration factor as the cluster
preformation probability in the �ssion model.

Compared to �ssion models our approach has the advantage of using only the outer, rather
well-known part of the nuclear potential. Besides this well-known potential part, our model
contains only one parameter which determines all preformation probabilities. Moreover, this
model appears to be the appropriate starting point for discussing structure e�ects (previous
subsection).
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IV. SUMMARY

The excellent agreement with experimental data strongly supports the underlying physical
assumption of the presented model: The decay constant � = �G S is given by the one-
body decay constant �G times the preformation probability S. From �- to Si-decay this
preformation probability varies over more than 20 orders of magnitudes. The absolute size
of this factor and its variation can be understood microscopically.

The presented model provides a uni�ed description of cluster decays covering a range of
emitted fragment mass numbers from a = 4 to a = 34, with half-lives from 10�11s to 1025s,
and with branching ratios relative to �-decay from 10�9 to 10�16. In addition, the model
provides a qualitative understanding of the �ne structure e�ects.

The theoretical expression (14) for the decay constant may be readily applied to any
wanted decay. Because of the excellent reproduction of known decay rates it is well-suited
for an unambiguous prediction of yet unmeasured decay constants.

APPENDIX

In this Appendix we provide a simple analytical formula for the decay constant . This hand-
pocket formula may be used for �-decay and all exotic decays. For this purpose the realistic
potential (5) is simulated by a square well with a suitable radiusRi. The nearly a-independent
knocking frequency � = v=(2Ri) is �xed to an appropriate numerical value. The resulting
decay constant is then given by

�theor � � S (a�1)=3
� exp(�2I) ; � = 3:0 � 1021 s�1 ; S� = 6:3 � 10�3 : (17)

The penetration integral for the pure Coulomb potential can be evaluated analytically. It
yields

I = zZe2
s

2�

�h2EaA

n
arccos

�p
x
�
�
p
x� x2

o
(18)

with

x =
RiEaA

zZe2
; Ri = r0 (a

1=3 + A1=3 ) ; r0 = 1:286 fm :

In addition one needs �h2=(2� fm2) = 20:9MeV (A + a)=(aA) and e2=fm = 1:44MeV. The
number for the reduced mass takes into account the mass defect in an average way (adjusted
to a = 12).

The input for the decay constant (17) is A, Z, a, z, and EaA of (6). Up to a = 34 all
decay constants of (14) are reproduced within a factor of 3.
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Figure 1: Fine structure of the 14C-decay of 223Ra. The decays to the �rst two excited states
of 209Pb are favoured. The experimental spectroscopic factors Sexp are determined from (16).
For the favoured decays they are reproduced by eq. (13) with (15) yielding Sbulk = 2:9 �10�10.
The transition to the ground-state is hindered by a factor of 150.
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TABLE CAPTIONS

Table 1: The theoretical values �theor of (14) are compared to the measured half-lives10 �exp
for decays from even parent to even daughter nuclei which are always favoured. The energies
EaA are given in MeV, the half-lives � in seconds. The theoretical and experimental values
agree generally within a factor of 5; only for 228Th! 20O+ 208Pb the theoretical half-life is
ten times too large.

Table 2: Cluster radioactive decays from odd parent nuclei to daughter nuclei which are in
the ground-state or in selected excited states. The di�erence EaA(g:s:)�EaA(excit:) between
the tunneling energies is given by the excitation energy Eex

A of the daughter nucleus. The
calculated half-lives �theor apply to favoured transitions only . Since the �ne structure is usually
not resolved, the experimental half-lives �exp are attached tentatively to favoured transitions
in accordance with our calculation. Decays into lower states are then hindered or unfavoured.

Table 3: Continuation of Table 2. The last entries are decays where the emitted cluster is
odd.
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A+a(Z + z) �! az + AZ EaA log �theor log �exp

222Ra �! 12C + 210Pb 29.16 16.6
�! 14C + 208Pb 33.16 11.7 11.0

224Ra �! 14C + 210Pb 30.65 16.3 15.9
226Ra �! 14C + 212Pb 28.32 21.1 21.2

�! 20O + 206Hg 40.97 26.6
224Th �! 14C + 210Po 33.06 13.6

�! 16O + 208Pb 46.64 15.0
226Th �! 14C + 212Po 30.68 18.0

�! 18O + 208Pb 45.89 18.2
228Th �! 14C + 214Po 28.34 23.0

�! 20O + 208Pb 44.87 21.8 20.8
230Th �! 20O + 210Pb 41.96 26.9

�! 22O + 208Pb 43.34 26.6
�! 24Ne + 206Hg 57.96 24.8 24.6

232Th �! 26Ne + 206Hg 56.15 29.3 > 27:9
230U �! 14C + 216Rn 28.47 24.7

�! 22Ne + 208Pb 61.59 20.4
�! 24Ne + 206Pb 61.55 22.2

232U �! 24Ne + 208Pb 62.50 20.8 21.1
�! 28Mg + 204Hg 74.54 25.3

234U �! 24Ne + 210Pb 59.03 25.5 26.0
�! 28Mg + 206Hg 74.35 25.4 25.5

236U �! 24Ne + 212Pb 56.15 29.8
�! 26Ne + 210Pb 56.94 30.6
�! 30Mg + 206Hg 72.73 29.1

236Pu �! 28Mg + 208Pb 79.90 21.3 21.7
238Pu �! 28Mg + 210Pb 76.16 25.6 g 25:7�! 30Mg + 208Pb 77.26 25.8

�! 32Si + 206Hg 91.47 25.8 25.3
240Cm �! 32Si + 208Pb 97.83 21.8

�! 34Si + 206Pb 91.31 27.3
252Cf �! 46Ar + 206Hg 127.1 29.9

Table 1: The theoretical values �theor of (14) are compared to the measured half-lives10 �exp
for decays from even parent to even daughter nuclei which are always favoured. The energies
EaA are given in MeV, the half-lives � in seconds. The theoretical and experimental values
agree generally within a factor of 5; only for 228Th! 20O+ 208Pb the theoretical half-life is
ten times too large.
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A+a(Z + z) �! az + AZ EaA log �theor log �exp

221Fr �! 14C + 207Tl 31.40 14.1
31.05 14.7
30.06 16.7 > 15:8

221Ra �! 14C + 207Pb 32.50 13.0
31.93 14.0
31.60 14.6 > 14:4
30.87 16.0

223Ra �! 14C + 209Pb 31.96 13.8
31.18 15.3 15.2
30.54 16.5
30.39 16.8

225Ac �! 14C + 211Bi 30.59 17.3 17.2
30.19 18.1
29.83 18.9

229Th �! 14C + 215Po 27.22 25.7
26.94 26.3
26.92 26.4
26.81 26.7

�! 20O + 209Pb 43.57 24.0
42.79 25.4
42.15 26.6
42.00 26.9

�! 24Ne + 205Hg 58.02 24.7
57.65 25.3
57.56 25.4
56.17 27.6

231Pa �! 24Ne + 207Tl 60.61 22.2
60.26 22.7 23.4
59.27 24.1

Table 2: Cluster radioactive decays from odd parent nuclei to daughter nuclei which are in
the ground-state or in selected excited states. The di�erence EaA(g:s:)�EaA(excit:) between
the tunneling energies is given by the excitation energy Eex

A of the daughter nucleus. The
calculated half-lives �theor apply to favoured transitions only . Since the �ne structure is usually
not resolved, the experimental half-lives �exp are attached tentatively to favoured transitions
in accordance with our calculation. Decays into lower states are then hindered or unfavoured.
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A+a(Z + z) �! az + AZ EaA log �theor log �exp

233U �! 24Ne + 209Pb 60.69 23.2
59.91 24.3 24.8
59.27 25.2
59.12 25.4

�! 28Mg + 205Hg 74.47 25.3
74.10 25.8
74.01 25.9
72.62 27.7

235U �! 24Ne + 211Pb 57.55 27.7 27.4
�! 26Ne + 209Pb 58.30 28.4

57.52 29.7
56.88 30.7
56.73 31.0

�! 28Mg + 207Hg 72.42 27.8
237Np �! 30Mg + 207Tl 75.25 27.1

74.90 27.5 > 27:3
73.92 28.8

239Pu �! 34Si + 205Hg 91.11 27.6
90.74 28.1
90.65 28.2
89.26 29.8

241Am �! 34Si + 207Tl 94.21 25.5 > 25:3
93.86 25.9
92.87 27.0

243Cm �! 34Si + 209Pb 95.05 25.9
94.27 26.7
93.62 27.4
93.48 27.6

231Pa �! 23F + 208Pb 52.01 24.7 > 24:6
49.40 29.1
48.81 30.1

233U �! 25Ne + 208Pb 60.94 23.7
58.33 27.6
57.74 28.5

235U �! 25Ne + 210Pb 58.02 27.9 27.4
57.24 29.2
56.94 29.6

Table 3: Continuation of Table 2. The last entries are decays where the emitted cluster is
odd.


